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The regulation of gene expression programs is essential for normal cellular function. These

programs are fundamentally regulated at transcription and are orchestrated by sequence-specific

transcription factors (TFs). The work presented here focuses on the wide-spread survey of TF

activity, as well as an in depth study of a single TF, p53.

TFs function by binding DNA, and alter transcriptional programs through their effector

domains. Despite the importance of TFs it remains a challenge to probe when and where TFs are

actively regulating transcription as opposed to simply binding DNA. The focus of the first part of

this thesis is to define a computational model to assess which TFs are actively regulating from a

single nascent RNA-sequencing experiment. Using this model we built a framework in which TFs

are categorized into distinct regulatory classes, cell type specific or shared across cell types. From

this classification we are able to define distinct TF characteristics that may be related to their

regulatory function.

In contrast, the second part of this thesis focuses on a single TF, p53. The p53 trans-activation

domain (TAD; an effector domain) plays a major role in p53’s ability to alter gene expression

programs in response to cellular stressors such as DNA damage. In two separate studies we explore

the function of the p53-TAD. First, we explore the inhibition of the p53 response induced by blocking

the p53-TAD:Mediator interaction. Next, we explore the activity of the naturally occurring p53

isoform ∆40p53 in conjunction with WTp53 in a stoichiometrically controlled system. The ∆40p53

isoform is missing the first 40 amino acids that make up most of TAD1. In this we find that the

∆40p53:WTp53 isoform is broadly unable to activate transcription, but doesn’t display a p53 null

phenotype. Taken together, my body of work gives a deeper understanding of TF activity as a

whole.
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Chapter 1

Introduction

It has been over twenty years since the first draft of the human genome was published in

2001 as part of the Human Genome Project. This massive public project incorporated the work

of scientists from all over the world to draft the nearly 3 billion base pairs that make up the

human genome[1]. About a decade after the conclusion of the Human Genome Project, Next

Generation Sequencing (NGS) started to become widely available and with it came the power to

address complex biological questions on a genome wide scale[53, 244]. With this technology at their

fingertips, scientists began to develop new assays, tools and algorithms to better understand the

basis of the regulation of the human genome. From the DNA code[162] to RNA transcription[135]

to protein translation[37], scientists developed innovative ways to measure numerous steps of gene

regulation.

One step of gene regulation of particular interest is a fundamental step in the central dogma,

the process of transcribing DNA into RNA. Transcription in many ways is the basis of all gene

regulation. Many cellular signalling cascades initiated by external stimuli end in the activation or

repression of transcription [91, 98, 99]. Cell identity is defined by which enhancers and genes are

transcribed within the cell[41]. Aberrant transcription often leads to detrimental diseases, such as

cancer. In fact, mutations in transcription factors (TFs) are often drivers of oncogenesis[222].

In this introduction, I will discuss the basic regulatory processes surrounding transcription.

There will be a particular emphasis on TFs, as they are the proteins that primarily direct tran-

scription. Every aspect of my doctoral work has been touched by TFs in some way. Since much of
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this work has revolved around various NGS assays, I will also briefly describe some key assays and

analyses that appear throughout this thesis. Finally, an overview of one TF, p53 (gene: TP53) will

be discussed as it is the focus of two manuscripts presented in this thesis (Chapters 3, 4).

1.1 Transcription

Fundamentally, transcription is the process of copying double stranded DNA into single

stranded RNA. This RNA can then go on to play many distinct cellular roles, with both protein-

coding and non-coding functions. Some types of RNA include messenger RNAs (mRNA) that later

are translated into protein, enhancer RNAs (eRNA) which are short unstable RNAs associated

with active enhancers, transfer RNAs (tRNA) which play a role in peptide synthesis and ribosomal

RNAs (rRNA) that catalyzes peptide synthesis.

RNA Polymerase II (PolII) is responsible for the transcription of both mRNAs and eRNAs.

PolII dependent transcription relies on a core set of general transcription factors (GTFs). These

factors assemble on the DNA template at initiation regions to form the pre-initiation complex

(PIC). This is followed by the three main phases of the transcription cycle: initiation, elongation

and termination shown in Fig. 1.2. In this section I will provide an overview of the process of

transcription, as well as discuss how we can measure transcription output genome wide.

1.1.1 The transcription cycle

1.1.1.1 The pre-initiation complex

There are several GTFs that play a fundamental role in transcription. These PolII associated

GTFs include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and Mediator. These factors associate

the promoter template DNA as shown in Figure 1.1. The PIC dictates the transcription of all coding

and most non-coding RNA molecules. Briefly, TFIID binds the DNA upstream and downstream

of the transcription start site inducing a bend in the DNA. TFIIA then binds stabilizing TFIID,

followed by TFIIB which stabilizes the non-coding strand of the DNA to aid in maintaining the
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open DNA confirmation. Next, TFIIF forms a protein bridge with TFIIB stabilizing the open

DNA confirmation for PolII to bind. TFIIE interacts with PolII cleft and helps orient TFIIH

binding. TFIIH is the ATP-dependent DNA translocase that fully opens the double stranded DNA

for transcription to begin. Mediator acts as a scaffold for the other PIC factors and integrates

signals from sequence-specific TFs bound at distal regulatory regions. I will focus in more detail

on two members of the PIC, Mediator and TFIIH as my research directly pertains to these two

GTFs.

Mediator is a 26-subunit protein complex that plays a major role in coordinating the PIC at

the site of transcription initiation, such as a gene promoter. Mediator itself associates with DNA

in a non-sequence specific manner, yet is capable of regulating transcription at specific initiation

sites[202]. One mechanism in which this is possible is through the interaction with sequence-

specific TFs[4]. Sequence-specific TFs will be discussed in more detail in section 1.2, but briefly

TFs are able to establish favorable conditions for transcription, as well as interact with various

Mediator subunits to stabilize the Mediator-PIC assembly at the promoter. This stable assembly

of Mediator and the PIC promotes increased transcription output [43, 247]. Additionally, Meditor-

TF interactions have been shown to induce conformational changes in Mediator that alter PolII

activity[172]. Taken together, Mediator acts as a communication hub between TFs bound at distal

regulatory regions (section 1.1.2) and the PIC to attenuate transcription output within the given

cellular context[78, 79]. Blocking the interaction between Mediator and a sequence-specific TF,

p53, is the focus of Chapter 3.

TFIIH is an essential 10-subunit complex that functions both in the nucleus for DNA repair

and transcription activation, but also plays a role in cell cycle regulation[204]. The 7-subunits core

functions as a 5′-3′ DNA translocase, unwinding the DNA in an ATP-dependent manner to open

the template for active PolII transcription[90]. The dissociable 3-subunit kinase module known

as the CAK contains cyclin dependent kinase 7 (CDK7). CDK7 is known to play an important

role in cell cycle regulation, management of the transcription cycle through the phosphorylation of

the PolII CTD as well as a role in the recruitment of splicing factors for mRNA generation[203].
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Assessing the impact of specific CDK7 inhibition on transcription and mRNA biogenesis is the

focus of Appendix A.

1.1.1.2 Initiation

Once the PIC is assembled at the promoter, PolII is poised to initiate transcription. At this

stage PolII will begin to transcribe either the sense or anti-sense strand of the open DNA template.

In terms of genic transcription, only the sense DNA template results in transcription elongation

and a viable mRNA molecule. The PIC functions to preferentially orient PolII relative to the sense

strand of DNA. The anti-sense transcript will often terminate in a few hundred nucelotides[52, 220].

Both sense and anti-sense transcripts are capped, but the short anti-sense transcript is rapidly

degraded. However, the presence of both sense and anti-sense transcription leads to a characteristic

bidirectional signal at sites of transcription initiation. The site of transcription initiation will be

used in subsequent computational inference of TF activity, or TF inference, discussed in more depth

in section 1.2.3.

Once PolII has initiated transcription in the sense direction it quickly faces another regulatory

checkpoint, the promoter-proximal pause. Approximately 60 base pairs downstream of initiation

PolII pauses[2]. This pause is facilitated by TFIID and negative elongation factors NELF and

DSIF[71, 179, 235, 250]. The phosphorylation of NELF and DSIF by PTEF-b within the super

elongation complex (SEC) facilitates PolII pause release and permits transcription elongation[164].

1.1.1.3 Elongation

Elongation is the stage of transcription where PolII transcribes the entirety of the gene

body. Many processes occur during this stage of transcription, such as co-transcriptional splicing.

Splicing is the process of retaining protein coding regions of RNA (exons) and removing the non-

coding portions of RNA (introns). Nearly all of the genes in the human genome have multiple

splicing variants, leading to alternative isoforms that may be deferentially expressed based on the

stage in development, cell type or external stimuli. These isoforms may take on context specific
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functions to alter activity depending on the protein in question.

Splicing is a complex process dependent on many cofactors and is impacted by things like

PolII transcription rate, however splicing is primarily regulated by the spliceosome[23, 165]. Two

major components of the spliceosome SF3B1 and U2AF2 have been shown as direct targets of

CDK7 phosphorylation. This implies that CDK7 plays a role in the regulation of spliceosome

during elongation[203]. While PolII transcribes approximately 3kb/min, alterations of this rate

can cause intron inclusion or exclusion [80].

1.1.1.4 Termination

The final stage of transcription is termination. Termination is where PolII ends transcription

and releases the DNA. At the end of the gene, there is a cleavage and poly-adenylation signal

(CPS, AAUAA). Once PolII transcribes this signal the cleavage and poly-adenylation complex

(CAP) is recruited and the nascent RNA is cleaved and poly-adenylated completing the RNA

maturation process. The mature mRNA is subsequently exported from the nucleus. The PolII

enzyme however continues to transcribe the DNA template. The nascent RNA associated with

PolII is uncapped following the cleavage, which allows the exonuclease Xrn2 to degrade the RNA

attached to the elongating polymerase. As PolII slows, Xrn2 reaches PolII and dislodges it from

the DNA template[50, 54].

This process results in transcription downstream of all coding genes. One observation in

the literature is that some cellular perturbations such as heat shock and viral infection induce

increased transcription of the downstream of cleavage RNA (transcriptional run-on) and lack of

proper transcription termination[45]. It’s unclear why this occurs, and how this may translate to

the increased presence of down-stream of gene (DoG) content in the related mRNA molecules. The

relationship of increased transcriptional run-on and mRNA containing DoGs is an area of active

research.
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1.1.2 Enhancers

Promoters are regulatory regions at the 5′ end of genes where the PIC assembles for gene

transcription (section 1.1.1.2). Some sequence specific TFs also bind at the promoter, but many

bind at intergenic, non-coding regions throughout the genome. TFs will be discussed in more depth

in section 1.2, but by binding these regions the TF is able to alter transcription at genes sometimes

hundreds of kilobases away. These regions were denoted enhancers for their ability to enhance genic

transcription output[40].

The concept of enhancers has been around for over 40 years[21]. The most fundamental defi-

nition of an enhancer is that it drive gene expression regardless of position or orientation relative to

the target gene. Over time, the definition has expanded to include various histone marks associated

with enhancer regions[95]. Canonically, H3K27ac and H3Kme1/2 are associated with enhancer ac-

tivity. Although, H3Kmethylation may simply be a read out of transcription output at a region.

H3Kme3 is often associated with promoter regions, which tend to have a higher transcriptional

output than enhancer regions[52]. Generally, multiple enhancers act in conjunction to drive the

genic transcriptional response, and the loss or gain of a single enhancer is often not detrimental

to gene expression[13, 182]. However, it’s shown that a disproportionate number of disease asso-

ciated single nucleotide polymorphism (SNPs) in intergenic regions are located within enhancer

regions[153, 212].

1.1.3 Measuring transcription genome wide

Transcription is a complex, highly regulated process with distinct phases and many interesting

features. This lead to the desire for assays that directly measure transcription genome wide[44, 245].

Protocols that achieve this all fundamentally do the same thing, they provide the actively tran-

scribing PolII with a nucleotide variant that is incorporated into the nascent RNA and is used to

isolate the nascent RNA molecules. Global Run-On Sequencing (GRO-seq) uses 5-bromouridine

5′-triphosphate[239], Transient Transcription Sequencing (TT-seq) uses 4-thiouridine[215] and Pre-
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cision Nuclear Run-On Sequencing (PRO-seq) uses a Biotin-11-NTP[135, 160].

Here I will focus on PRO-seq, as it plays a pivotal role in most chapters in this thesis

(Chapters 2, 4 and Appendix A). In PRO-seq, the first step is to isolate nuclei and perform a run-

on experiment with a biotinylated-NTP. This biotinylated-NTP is incorporated into the nascent

RNA by actively transcribing RNA polymerase and is then used specifically to pull-down nascent

RNA through a biotin-streptavadin interaction. This nascent RNA can then be sequenced using

NGS and mapped genome wide[135, 160].

PRO-seq yields direct information about transcription within the cellular context of the given

experiment. At genic regions we observe evidence of all three main phases of transcription: initi-

ation, elongation and termination. There is a prominent peak at promoter-proximal region at the

5′ end of all transcribed genes. The promoter-proximal peak could be preset due to early abortive

transcription or PolII pausing as previously described. Over the gene body we observe a steady

elongation region, followed by a 3′ termination peak downstream of the CPS (Fig. 1.3A). At the

promoter proximal peak we also observe the short, unstable anti-sense transcript, resulting in the

bidirectional signal. This bidirectional signal is a fundamental characteristic of polymerase initia-

tion, as it is also observed at intergenic polymerase initiation sites associated with enhancers (Fig.

1.3B, section 1.1.2)[52]. While the function of enhancer associated RNA (eRNA) is incompletely

understood, it has been shown that the presence of these transcripts correlates with transcription

factor activity[17]. Furthermore, transcriptional output at non-coding enhancer regions is corre-

lated to the transcriptional output at the gene target. A technical benefit of these transcripts is

that their distinctive profile can be used to annotate active initiation regions genome wide[18, 240].

1.2 Sequence-specific transcription factors

Transcription is a fundamental process in cellular regulation. Importantly, it’s TFs that

orchestrate transcriptional programs. There are estimated to be at least 1,600 TFs in the human

genome[138]. TFs generally fall into three important categories of gene regulation, 1) they maintain

essential gene programs, 2) they drive cell-type specific features defining cell identity, and 3) they
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control cellular response to external stimuli[140].

TFs typically consist of at least two key components: a DNA-binding domain (DBD) and

an effector domain. The DBD is how the TF directly interacts with DNA in a sequence-specific

manner[112]. The effector domain is how the bound TF relays information resulting in altered

gene transcription[83]. In Figure 1.4A, I show the effector domains (TAD1 and TAD2) and DNA-

binding domain (DBD) for p53. In this section I will discuss how TFs preferentially regulate distinct

genomic regions, the role of TFs in gene regulation and how we can infer TF activity from a nascent

RNA sequencing assay.

1.2.1 Sequence-specific DNA binding

There are two core classes of TFs, 1) TFs that increase transcription output (activator) or

2) decrease transcription output (repressor). Both classes can be become activated in a myriad of

ways, such as post-translational modifications to the TF, induction of transcription of the TF gene

or blocked TF protein degradation. Once the TF is activated it binds a specific DNA sequence

through the DBD. Many active TF binding sites are at regions of PolII initiation, some preferentially

at enhancers and others at promoters (section 1.1.2).

A common NGS assay to survey TF binding genome wide is chromatin-immunoprecipitation

sequencing (ChIP-seq). In this assay the DNA is cross-linked to all DNA-associated proteins and

is sheared into small fragments. Then the TF of interest is pull-down along with covalently linked

DNA using an antibody. The DNA is then isolated, sequenced and mapped genome wide. The

resulting data yields low level coverage genome wide with an enrichment of reads (peaks) where

that TF was bound. ChIP-seq was performed in Chapters 3 and 4 of this thesis.

Based on ChIP-seq data, as well as complementary binding data such as SELEX and protein

binding microarray (PBM) data, researchers are able to determine the “DNA code” that a each

TF prefers. This code is commonly referred to as a TF motif. Sequence-specific TFs can bind

range of sequences with varying affinities. Therefore, we often represent TF motifs as position

specific scoring matrices (PSSMs). These matricies account for the probability of binding a given



9

nucleotide at a given position within the TF motif. Typically the TF motif will range from 5-30

nucleotides in length and will have a only few positions with a strong nucleotide preference. For

example, in the p53 motif shown in Fig. 1.4B there is a strong preference for C at position 4 and

G at position 7. Mutations in the p53 DBD that alter binding preferences have been shown to lead

to gene dysregulation and often lead to serious disease states in humans, like cancer[22].

TFs are essential for targeted gene regulation, and where they bind determines which genes

they regulate. For this reason there is desire in the field to robustly annotate the recognition motif

for all TFs in the human genome[138]. One of these databases is HOmo sapiens COmprehensive

MOdel COllection (HOCOMOCO)[134]. HOCOMOCO currently has combined 680 annotated TF

motifs. One use of PSSMs is to identify sites in the genome that could be bound by the TF. This

is usually done by scanning the DNA for matches to the PSSM given a chosen statistical cut-off.

Typically, there are far more potential TF sites (sequence matches) than observed binding sites in

a ChIP-seq experiment. However, even in a ChIP-seq experiment the presence of a sequence motif

can be used to focus researchers on direct versus indirect ChIP peaks. The use of TF sequence

motifs in the context of TF inference will be discussed in more depth in section 1.2.3, as it’s a key

concept in Chapter 2.

1.2.2 TF activation

Once bound and activated the TF goes on to alter gene regulation programs primarily through

the effector domain. Effector domains (trans-activation domains in activators, repressive domains

in repressors) are often intrinsically disorder regions (IDRs) that interact with transcriptional

co-factors to induce transcription changes[74]. Co-factors have many distinct functional classes

and activities such as acetyltransferases, H3K4-methyltransferases, bromodomain co-factors and

Mediator[92]. The recruitment of co-factors results in many distinct outcomes dependent on the

identify of both the TF and the co-factor.

One resulting outcome of TF binding and co-factor recruitment is the reordering of the

chromatin landscape. Most of the genome is heterochromatin which is tightly packed and not
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transcribed. PIC assembly depends on open and accessible chromatin which can be facilitated

by TFs. This aspect of TF activity is commonly referred to as “pioneer” activity[116, 166]. One

hypothesis explored in this work is whether pioneer activity is disproportionately observed in cell-

type specific TFs (Chapter 2).

1.2.3 Inferring TF activity

The computational inference of active TF regulation (TF inference) integrates the two key

pieces of data previously discussed, 1) the characteristic bidirectional signal that enables the precise

mapping of PolII initiation genome wide (sections 1.1.1.2,1.1.3) and the use of TF motifs as a proxy

for TF binding (section 1.2.1). TFs bind near PolII initiation regions (enhancers and/or promoters)

to regulate transcription. By measuring the co-localization of the active regions of PolII initiation

and the TF motif instances within these regions we can infer which TFs (as long as we have an

annotated PSSM) are active from a single nascent RNA sequencing experiment[17, 207].

Active TFs tend to co-occur with within 100bp of the PolII initiation site (µ) as shown in

Fig. 1.3B. One way to score motif displacement (MD-score) from PolII initiation is to simply ask,

across all enhancer and promoter regions in a given experiment, does a TF motif fall within one

nucleosome distance (150bp) of initiation more than by random chance. This can be calculated

with the simple formula[17]:

MD-score =
Hits across± 150bp of µ

Hits across± 1500bp of µ
(1.1)

Assuming random sequence at the genome composition, an inactive TF would be randomly

distributed relative to µ and result in a MD-score of 0.1. A transcription activator currently

participating in regulation would have an enrichment of motif hits surrounding µ compared to the

flanking region resulting in a score between 0.1-1. An active transcriptional repressor would have

a depletion of hits surrounding µ and a score between 0-0.1. These scores are represented in Fig.

1.5A as heat maps, where heat indicates the number of motif hits in that position relative to µ.



11

The shift in motif instance distribution between two conditions can be used to infer changes in TF

activity between conditions[207], such as p53 activation upon treatment with Nutlin-3a (discussed

further in section 1.3, Fig. 1.5B). In this work, I use this conceptual framework to determine all TFs

that are basally activated and repressed in any cellular context. The focus of Chapter 2 is centered

on statistically defining the TFs that drive cell identity and exploring their specific properties and

preferences.

1.3 p53: The guardian of the genome

To this point I have discussed transcription and TFs generally, here I will focus in on a single

TF, p53. p53 may be the most famous transcription factor due to it’s role in cancer biology, cell

cycle control, aging and development[121, 122, 129, 132]. Mutations in the TP53 gene are the most

common mutations in human cancer[82, 106]. In 1992 p53 was named the guardian of the genome

for its ability to mobilize a context appropriate response to DNA damage. When DNA damage is

detected, p53 is mobilized to enhancers genome wide to induce cell cycle arrest through activating

the gene CDKN1A (p21)[249]. This gives other cellular machinery time to repair the DNA. If the

DNA repair fails then p53 can trigger cellular senescence or even apoptosis[6, 9, 139, 208]. Beyond

that, p53 is able to activate in response to numerous cellular stressors and subsequently manage

the appropriate cellular response (Fig. 1.6). Due to the important role p53 plays in human health,

it’s an area of great interest to understand it’s complex regulatory function. Both Chapters 3

and 4 of this thesis focus on different aspects of p53 function to better understand its role as a

transcriptional activator.

1.3.1 Negative regulation of p53 by HDM2

It’s important for p53 function that the p53 protein is ready to rapidly respond to DNA

damage, but also not perpetually active as that would induce apoptosis. Cells have evolved to

constantly express p53, translate the protein and degrade it before it takes action in the nucleus.

In a tightly controlled process, HDM2 and HDMX (also denoted MDM2 and MDMX) control
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the degradation rate of p53 (Fig. 1.7). HDM2 is an E3 ubiquitin ligase that targets the first

trans-activation domain (TAD1) of p53[100, 108, 133] (Fig. 1.4A). This leads to the constant

degradation of p53 in the cell until a p53 stimulus occurs, such DNA damage. In response to a

myriad of cellular stressors stabilization of p53 via the release of p53 from HDM2. p53 then binds

DNA, recruits transcriptional co-factors and activates transcription[111, 236]. A small molecule,

Nutlin-3a, was synthesized to disrupt the p53:HDM2 interface with high specificity resulting in p53

activation[229]. This has allowed us to study the p53 response directly without confounding factors

of other DNA damage responding TFs[6, 9].

1.3.2 p53 in gene regulation

The p53 TF binds DNA and regulates transcription as a homotetramer consisting of two p53

dimers[186]. The p53 DNA recognition motif is 20 nucleotides long consisting of two 10 nucleotide

half sites (Fig. 1.4B), each bound by a homodimer within the functional tetramer. Once bound,

the TAD1 of p53 is required for the recruitment of p300 and Mediator[89, 115, 118, 119, 148] (Fig.

1.4A). This recruitment is directly related to p53s abilities as a transcriptional activator[254]. The

specific inhibition of TAD1:Mediator is discussed in Chapter 3.

While p53 induces differing cellular signalling cascades in different cell types, the core tran-

scriptional program of approximately 100 direct gene targets remains the same. These genes have

diverse biological functions that include inducing cell cycle arrest (CDKN1A, BTG2), DNA-repair

(DDB2, XPC), autophagy (DRAM1, SESN1) and apoptosis (BAX, PHLDA3)[6, 9]. Despite regu-

lating the same core set of genes, evidence shows that distinct sets of enhancers control these target

genes in different cell types. Current work in progress will provide additional information on how

stress-responsive TFs alter their behavior in distinct chromatin context but yield the same genic

transcriptional response[218].
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1.3.3 p53 alternative isoforms

The primary role of p53 is maintaining the integrity of the genome. However, different cells

will have different needs in regard to DNA damage response. One way p53 activity is modulated

across cell types and development is through the expression of alternative isoforms[30]. There are

twelve distinct p53 isoforms identified in the literature. There are also two additional p53 family

members, p63 and p73. These proteins also have many viable isoforms and bind similar DNA

recognition motifs to p53, which may alter p53 function[30, 123, 246].

The p53 isoform of particular interest is ∆40p53. In terms of transcription regulation ∆40p53

is missing the first 40 amino acids of p53 which contains most of TAD1. The ∆40p53 however retains

the oligomerization domain and the DBD. TAD1 of p53 has been designated the primary trans-

activation domain in p53 regulation. When ∆40p53 is expressed alone in mice, the mice mimic a

p53 null phenotype. However, when this isoform is expressed in conjunction with full length p53,

mice undergo a rapid aging phenotype[189]. The ∆40p53 is important to study due to its role in

p53 regulation, aging and development. Chapter 4 covers the thorough transcriptional analysis of

the ∆40p53 isoform in conjunction with the full length p53 isoform.
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Figure 1.1: Illustration of components assembled at initiation as part of the
pre-initiation complex. The factors shown assembled for initiation are: TFIID, dark grey;
TFIIA,TFIIB, TFIIF and TFIIE, grey; PolII, orange; TFIIH, pink; Mediator, green; DNA, blue.
Adapted from Rimel and Taatjes 2018[204].
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Figure 1.2: Overview of transcription. Diagram of the phases of transcription, adapted from
Cramer 2019[56]. Initiation (left) leads to bidirectional transcription (RNA in red) as RNA
polymerase II (blue circle) can initiate on either strand of DNA (blue line) with the aid of the
pre-initiation complex (purple circles). During elongation (middle), RNA polymerase II proceeds
through the gene, recruiting splicing and 3′ processing machinery within the gene body (orange
circles). After the cleavage site (labeled CPS), RNA polymerase II enters the termination phase
(right) where the nascent RNA is cleaved and poly-adenylated. RNA polymerase continues to
transcribe past cleavage event before dissociating with the DNA template.

Figure 1.3: Illustration of PRO-seq data. A) Illustration of PRO-seq trace at a gene and B)
at an enhancer. The positive strand signal is represented in purple, the negative strand signal is
represented in dark purple, an example TF protein binding DNA at the region of PolII Initiation
is in gold.
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Figure 1.4: Important TF domains and a DNA recognition motif represented with
p53. A) Example of a TF that contains a trans-activation domain and a DBD. Shown here are
the protein domains of p53. p53 has two trans-activation domains (TADs, purple and orange), a
DNA-binding domain (grey), a nuclear localization signal (NLS, light blue), a oligomerization
domain (OD, light green) and a basic region (BR, dark green). General transcriptional co-factors
and HDM2 are represented in pink. B) The first half-site of the p53 DNA recognition motif,
shown as a position specific scoring matrix. The p53 motif is composed of two nearly identical 10
nucleotide half-sites. C) Schematic showing the possible isoforms of p53. Adapted from Khoury
and Bourdon 2011[123].
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Figure 1.5: TF Inference. A) Example heatmaps of an inactive TF, an activator and a
repressor. The center of each heatmap is the annotated PolII initiation region (µ) and the heat
(red is higher) is the number of motif hits for that TF within 100bp bins across a 3000bp region.
B) Additional heatmaps showing significant p53 enrichment after Nutlin-3a activation. TFEA
MA plot where each dot represents a single TF with p53 shown in red. The x-axis shows total TF
motif hits and the y-axis shows a measure of TF enrichment accounting for the co-localization of
a TF motif with PolII initiation regions genome wide demonstrating the ability to infer p53
activity in p53 stimulated versus control conditions[6, 142, 207].
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Figure 1.6: p53 is an important stress response transcription factor. p53 is able to
integrate a number of cellular stresses and orchestrate the appropriate cellular response.
Schematic of the roles of p53 adapted from Bieging and Attardi 2011[25].
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Figure 1.7: p53 is negatively regulated by HDM2. Diagram of p53 activation in response to
a p53 stimulus. Various p53 stimuli are summarized in Figure 1.6. In unstressed cellular
conditions HDM2 (magenta) constantly ubiquinates p53 (gold) and promotes nuclear export.
Once polyubiquinated (blue), p53 is shuttled to the proteosome (brown) for degradation. Upon
p53 stimulus or treatment with the small molecule, Nutlin-3a (red), the p53:HDM2 interface is
blocked allowing p53 to stabilize and localize to the nucleus. In the nucleus p53 binds DNA (dark
grey) and promotes the p53 gene regulation program (green). One target for up-regulation is
HDM2 itself creating a negative feedback loop. Figure adapted from Chene 2003[47].



Chapter 2

Transcription factors display distinct localization preferences and regulation

mechanisms based on function

The work in this chapter is currently ongoing. The code used to generate the TF profiles can

be found at https://github.com/Dowell-Lab/TF_profiler. Methods are discussed in Appendix

B.1.

2.1 Contribution Statement

I preformed the majority of the work in this Chapter. The curation of the nascent sequencing

repository (DBNascent) was performed by the Dowell lab members in the summer of 2020. The two

primary contributors to subsequent DBNascent data processing which includes mapping, quality

control, gene counting and bidirectional calling are Rutendo Sigauke and Lynn Sanford. Work on

the DBNascent publication is currently in progress[218].

2.2 Abstract

Transcription factors orchestrate transcription and play a critical role in cellular maintenance,

identity and response to external stimuli. Despite the importance of transcription factors it remains

a challenge to probe when and where transcription factors are actively regulating transcription.

Here we define a computational model to assess which transcription factors are actively regulating

from a single nascent RNA-sequencing experiment. We apply our model across 89 published papers

to classify TF profiles of 82 distinct cell lines. From this classification we find that transcription

https://github.com/Dowell-Lab/TF_profiler
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factors that drive cell identity bind enhancer regions with a base composition bias close to genomic

background. We postulate that cell type specific transcription factors play an important role not

only in driving cell identity but establishing cell type specific enhancers.

2.3 Introduction

Transcription is a fundamental process in defining cellular function, stress response and cell

identity[140]. The regulation of gene expression patterns is driven by myriad of sequence-specific

transcription factors (TFs) that vary in activity based on both cell type and environmental factors.

While there are over 1,600 TFs[138] in the human genome, we don’t have a consensus on when or

where individual regulatory factors are actively altering gene expression patterns.

Transcription factors orchestrate gene regulation programs by altering the activity of cellu-

lar RNA polymerases, primarily RNA polymerase II. Some TFs induce increased transcriptional

output (an activator) whereas others decrease transcriptional output (a repressor). Therefore, char-

acterizing when and where TFs are active is necessary to understand the regulatory process. In

fact, one of the goals of Encyclopedia of DNA Elements (ENCODE) Consortium was to identify

all functional regulatory elements in the human genome[51]. In the ENCODE project, the primary

method utilized to assess TF activity was chromatin immunopreciptation assays (ChIP-seq). ChIP

informs on the localization of a protein to specific regions within the genome. Functionally, ChIP-

seq measures the DNA binding domain of a protein, which is the domain the TF utilizes to directly

interact with DNA in a sequence-specific manner[112]. From ChIP-seq studies, it is possible to

infer a position specific scoring matrix (PSSM) for a given DNA binding protein. ChIP-seq studies,

however, are low throughput in terms of proteins assayed as one sequence-specific protein is evalu-

ated at a time, in one cell type at a time. Furthermore, there is ample evidence of TF binding can

occur without altering gene expression[34, 146], as the DNA binding domain is independent of the

effector domain. The effector domain is how the TF relays information resulting in altered gene

transcription thus is important to study due to it’s crucial role in transcriptional regulation[83].
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However, measuring the activity of the effector domain – i.e. assaying TF activity has

historically been difficult. Part of the difficulty comes from the fact that TF activity can be

regulated at multiple stages in the life cycle of a protein. For example, regulation may occur at

the level of transcription, translation, post-translational modifications and degradation. Most TFs

have their own mechanism of activation, such as MAPK pathway phosphorylation events result in

stabilization and activation of MYC [209], or the inhibition of the ubiquitin ligase HDM2 resulting

in the stabilization and activation of p53[100, 108, 133]. In these two cases, the MYC and TP53

genes are transcribed and the mRNA and proteins are present in most cellular conditions, despite

being inactive until certain stimuli impact the cell. Thus, neither transcription of a TF encoding

gene, nor binding of a TF to DNA guarantees it will alter transcription. As the ultimate outcome

of the effector domain activity is a change in transcription, nascent transcription assays have the

potential to inform on effector domain activity.

Nascent RNA sequencing (such as precision run-on sequencing, PRO-seq)[135, 160]) provides

a direct read out of RNA polymerase activity as RNA is captured from the actively catalyzing

cellular polymerases. These assays revealed extensive genome-wide transcription, at both genes

and enhancers[18, 53, 126, 215]. While the function of bidirectional transcription within enhancers

is incompletely understood, a technical benefit of these transcripts is that their distinctive profile

can be used to annotate active enhancers genome wide[18, 58].

Studies on individual transcription factors found that activation of a TF resulted in con-

comitant changes in transcription levels associated with subset of TF binding sites (as measured

by ChIP)[6, 94, 97, 156, 195]. Subsequent work generalized these findings, showing a strong co-

association of TF binding sites with sites of RNA polymerase II initiation[17, 58]. The model that

emerged was that the regulatory activity of the TF (e.g. activity of the effector domain) results in

changes to RNA Pol II initiation immediately proximal to the TF sequence motif, within a mea-

surable (by ChIP) TF binding site[17]. Armed with this result, methods were developed to infer

changes in TF activity arising in response to a perturbation from differential nascent transcrip-

tion data and sequence motifs[17, 207]. The effectiveness of these methods indicates that nascent
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transcription can serve as a functional readout on the activity of a TF’s effector domain.

Here we sought to develop an algorithm for predicting TF activity from a single nascent tran-

scription experiment. To that end, we develop a statistical framework for comparing an individual

nascent transcription assay output to a principled, biologically informed statistical expectation.

When a TF recognition motif co-localizes with sites of RNA polymerase II more (or less) than

expected by chance, we infer that the TF is actively participating in regulation as an activator (or

repressor). Our algorithm can be used to identify all the transcription factors currently altering

transcription in a single sample, which we call TF profiling. Moreover, we applied our algorithm

to 287 high quality nascent RNA sequencing human data sets across 82 unique cell lines. From

this compendium we identify three classes of transcription factors: ubiquitous transcription factors,

cell type specific transcription factors and environmentally responsive transcription factors. Our

method correctly classifies well know TFs, such as Oct4 and Nanog, as only having activity in stem

cells. Furthermore, our model identifies unique sequence features inherent to cell type specific TFs,

suggesting a model for the establishment of cell type identity.

2.4 Results

2.4.1 An expectation model for TF motif co-occurrences

Our goal is to predict which TFs are actively participating in regulation of nascent transcrip-

tion. This work builds on the original paper for identifying differential TF activity by Azofeifa

et. al. from the Dowell lab[17], so let me first describe a brief description of that effort. For each

data set, first sites of Pol II initiation (µ) are identified using the Tfit algorithm[18]. These sites

are collectively known as bidirectionals and are located throughout the genome including at gene

promoters, enhancers, and within introns. Using the bidirectionals, a simple metric known as the

motif displacement (MD) score then calculated. The MD-score quantifies co-localization of TF

recognition motifs in DNA sequence (significant hits to the PSSM) with sites of RNA polymerase

II initiation. Briefly, the MD-score is the ratio of TF motif hits within hbp of µ over the TF
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motif hits within Hbps of µ. In the original paper, h was set to 150bps, roughly the size of a

single nucleosome. The denominator length, H was set at 1500bps as this length was long enough

to reach genome background frequency of nucleotide frequencies. The bulk of the Azofeifa work

was on using this between samples to identify TF activity changes in response to a perturbation, a

situation where the background motif hit bias (effectively the denominator) was of minimal impact.

However, Azofeifa did briefly examine the MD-score within a single data set as an effort

to validate the metric. Azofeifa noted that enhancers have heightened GC-content and therefore

developed a simple simulation based method of examining enrichment of a motif hit relative to

the collective set of µ (sites of Pol II initiation). For his simulated sequences, Azofeifa used a 4xH

matrix of nucleotide frequencies, effectively capturing the positional nucleotide bias of bidirectionals

around µ. Simulated sequences were then used to assess the background expectation of a particular

motif hit relative to the experimentally observed data. An examination of six cell lines identified

known cell type specific TFs active in the appropriate experiments. A larger examination of 491

experiments (34 cell types and 205 treatments) appeared to cluster predominantly by cell type,

further validating the MD-score metric as informative.

Notably, the Azofeifa clustering result suggests that a comparison of MD-scores between an

experiment and an expected statistical background has the potential to identify which TFs were

actively participating in regulation in every sample. Yet Azofeifa used this result only to validate

the MD-score metric and not to examine TF activity within individual samples. There were a

number of reasons the Azofeifa approach fell short of developing an algorithm for inferring TF

regulatory activity. First, the non-stationary background distribution utilized for the simulations

fails to capture known dinucleotide biases inherently present in regulatory regions, such as CpG

bias. Second, the non-stationary distribution defining background was trained on all bidirectionals,

including both enhancers and promoters. While both are biased, we now know that promoters

are exceptionally GC rich whereas enhancers show only a mild heightened GC content relative to

genomic background (Fig. 2.1C). The bias at promoters and enhancers are fundamentally and

significantly (KS Test; p-value=6.8e−4, Fig.2.2B) different. Finally, Azofeia used this model on
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a large compendia of data to generate the clustering. However, no quality assessment on those

data sets was conducted prior to the analysis. Hence while the overall patterns were suggestive,

individual TFs did not show high fidelity across experiments. In other words, in the work of Azofeifa,

a given TF may appear active in one set of HCT116 control cells but inactive in experiments from

a different paper on HCT116 control cells.

Here we seek to develop a robust algorithm for evaluating TF activity from a single nascent

transcription experiment. The goal is, for every TF motif within a data base, to ask whether

the patterns of co-localization of the motif hits with Pol II initiation deviate from expectation.

Deviations from expectation are thus candidate TFs with functionally active effector domains that

are actively participating in regulation.

First lets consider the original MD-score metric in a more rigorous mathematical framework.

Let Xi = µ1,µ2,. . . be the Pol II initiation sites µ for a set of bidirectional locations genome-wide

for some experiment i. Let Yj = y1,y2,. . . be the set of all significant motif instances for some

TF-DNA binding motif model j genome-wide, which is invariant given the genome of interest.

Examples of the distribution of motif hits relative to Xi are given in Figure 2.1B as heatmaps,

where heat indicates the number of motif hits in that position relative to µ. We quantify the

co-localization of sequence motif hits with Pol II initiation as:

g(Xi, Yj ; a) =
∑
x∈Xi

∑
y∈Yj

δ(|x− y| < a)

mdi,j = g(Xi, Yj ;h)/g(Xi, Yj ;H)

(2.1)

Here, δ(.) is a simple indicator function that returns one if the condition (.) evaluates true and zero

if false. The double sum, i.e. g(), returns the count of motif hits for a given motif j across the

complete set of bidirectional initiation sites Xi in one experiment i that are within a given distance

a. Hence the MD-score (mdi.j) for a given experiment i and TF recognition motif j quantifies co-

localization of motif instances near sites of Pol II initiation (h = 150bps) relative to a larger local

window (H = 1500bp). Importantly, the use of enhancers defined by nascent RNA-sequencing is

essential for this score due to the precision on the position of initiation when compared to enhancers
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defined by H3K27ac ChIP-seq (Fig. 2.3A-C).

The motif displacement score (MD-score) gives a starting estimate of TF activity. If the

nucleotide distribution within the genome were random, a TF which is not present (off) would score

0.1 whereas an activator would show enrichment around µ and have scores > 0.1 and repressors

would show depletion around µ and have scores < 0.1. Genomes, however, how distinct non-

stationary patterns including GC-content enrichment at promoters[51, 72] and enhancers[17]. As

discussed previously, the simple positional bias model of Azofeifa is also inaccurate as it does not

account for the fundamental genomic biases at PolII initiation sites. Gene promoters are highly

enriched for CpG islands and are associated with open chromatin[10, 26, 113]. Where the human

genome is approximately 60% composed of AT, promoters are approximately 60% GC immediately

around the site of Pol II intiation µ (Figure 2.1C). Enhancer initiation regions are also GC rich

compared to the genomic background, but more modestly – reaching an equal composition of all

four bases (approximately 50% GC, 2.1C) near µ. Because of the fundamental base composition

bias at initiation regions, certain motif instances, especially for those motifs that are very AT or

very GC rich, will be strongly impacted resulting in many false negatives and positives respectively.

To improve on the sampling model of Azofeifa, we leverage a dinucleotide model of positional

nucleotide preference (Figure 2.1D), which better accounts for known biological dinucleotide biases,

such as the general preference for CG in CpG islands compared to GC (Fig. 2.2A). To this end,

sequences of the length of 2H nucleotides were generated accounting for dinucleotide preferences

in regions of initiation. Importantly, the positions i are defined relative to µ (e.g. the generated

sequence is µ± H). Let xn = x1,x2,. . .x2H where the probability of a specific nucleotide at each

xi is determined based on the nucleotide xn−1. Thus each position is described by the conditional

probability p(Nxi |Nxi−1), where N represents one of the four standard nucleotides (A, T, C or G).

The initial dinucleotide x1x2 is calculated as p(N1, N2) and all subsequent positions are based on
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the conditional probability of the previous position. Therefore, we generate the sequences as:

x1x2 = p(N1, N2)

xi = p(Ni|Ni−1) for i > 2

(2.2)

The model was parameterized using a training data set built from a master list of all control

data sets within DBNascent (See Methods B.1) and gives results as shown in Figure 2.2A. Using this

model, we simulate promoters and enhancers separately to a depth of 106 sequences each using the

conditional nucleotide probabilities. Across data sets (SRRs with combined biological replicates)

the promoter and enhancer content varies (Fig. 2.7A). To account for the variability in fraction of

initiation regions that are promoters (vs enhancers), the simulated initiation regions were subset

to an equal proportion of promoter:enhancers of each individual data set. A total of 106 sequences

with the representative promoter:enhancer ratio were then used as the background model. The 106

simulated sequences (with a promoter:enhancer ratio that matches the data set) were then used

to calculate the expected MD-score for each TF-motif. The MD-score was calculated based on

equation 2.1, assuming for each simulated sequence a µe at position xH .

More rigorously, let Yf = y1,y2,. . . be the set of all significant motif instances scanned against

the given set of simulated sequences. We quantify the co-localization of sequence motif hits within

the simulated background model as:

g(Xe, Yf ; a) =
∑
x∈Xe

∑
y∈Yf

δ(|x− y| < a)

mde,f = g(Xe, Yf ;h)/g(Xe, Yf ;H)

(2.3)

A plot of the expected (i.e. model derived, x-axis) to observed (i.e. experimentally observed,

y-axis) MD-score for a single experiment is shown in Figure 2.5A. Thus, the expectation model is

calculated on a per data set basis to accurately reflect the composition of initiation regions. By

taking these steps, we developed a more robust expectation model in terms of relative motif hits,

MD-score variance and biological relevance.
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2.4.2 Building a TF activity profile

The next step is to assess the statistical significance of TF activity for each TF-motif, i.e. to

ask which motifs in Figure 2.5A are significantly more (or less) co-localized than our background

model suggests (e.g. than expected). TFs with greater (or less than) expected co-localization are

the TFs which we infer as ON (ON-UP and ON-DOWN, respectively) and participating actively

in regulation. To this end, the MD-scores for all HOCOMOCO TF motifs (n=388 for TF motifs

that have instances near sites of initiation) are compared in two dimensions for all control data sets

(n=126), resulting in (n=48,888) points. We fundamentally assume that a portion of TFs will be

OFF (not significantly different from expectation) in each data set.

To assess whether the MD-score is higher (ON-UP) or lower (ON-DOWN) than expected, we

fit a set proportion of inlier TF MD-scores to a linear equation shown in Figure 2.4A as the purple

points. This results in a slope of 1.0 and an intercept of 0.0, with a normal distribution of residuals

centered at 0.0 (Fig. 2.4B). The distribution of residuals is used to attribute significance values

to all TF motifs within all control data sets (n=48,888). This results in a range of 80-164 TFs

that are ON in any given data set (mean=123.5, p-value < 0.05). The ON TFs can be split into

two categories, on and up (ON-UP, activators; range of 74-148, mean=109.9) or on and down (ON-

DOWN, repressors; range 5-28, mean=13.6) shown in Figure 2.4C. This processes is repeated for all

curated perturbation data sets shown in Figure 2.4D-F. There are fewer ON-DOWN TFs compared

to ON-UP for two possible reasons. First, there may be fewer functional repressors than activators

active within the cell at a given time. However, it may also reflect technical limitations on our

ability to call repressors using the MD-score approach (equations 2.1,2.3). The MD-score approach

is limited due to the inherently compressed numerical range (0-0.1) of the metric. Ultimately, in a

given cell line we define approximately 125 TFs as active that play roles in 1) maintaining cellular

homeostasis and 2) aiding in defining cell identity.

Hence, we can thereby classify each TF-motif in each experiment as ON-UP, OFF, or ON-

DOWN based on the observed co-localization of the motif with sites of RNA polymearse initiation
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and whether it differs from expectation. We refer to the collection of ON TFs for a given cell line

as its TF activity profile. We apply this approach to over 70 cell lines with representative nascent

RNA sequencing data. In doing this we will define the core set of TFs that drive cell identity in each

cell line out of the approximately 400 TFs in the human genome with robustly defined motifs[134].

An example of this classification is shown in Figure 2.5A, where red and blue represent TFs that

are classified as ON-UP (red) and ON-DOWN (blue) within the TF profile and grey represents

those that are OFF.

Some general observations on the identity of ON and OFF TFs is notable. First, some

factors implicated in general cellular processes and proliferation are commonly called ON-UP in

the TF profiles including members of the ATF family, ETS family and KLF/SP family. Second,

when applied to an ESC data set (n=3 biological replicates) at baseline conditions[219], we call 95

enriched and 9 depleted TFs. Enriched TFs in this profile include the pluripotent factors responsible

for ESC self-renewal, Oct4 (pval=1.3e−5), Nanog (pval=2.7e−5) and SRY-Box Transcription Factors

3 and 4 (pval=0.008, pval=0.03 respectively). Across 3 additional ESC data sets[32, 68, 238] the

same pluripotency factors are consistently called as active. Third, the TF MyoD, which is not

associated with embryogenesis but is a strong determinate in muscle[59] is not significant in any of

the ESC samples. However, when we look at a myoblast data set [141] MyoD is highly enriched

(pval= 7.0e−9). Finally, the blood associated factor, GATA-2, is not significant in the ESC nor the

myoblast samples, but when tested against seven separate K562 data sets [29, 52, 64, 184, 231, 240]

it is consistently active. Given that the TFs defined by the TF profile within known cellular

contexts, such as ESCs, myoblasts and lymphoblasts are meeting expectation given previous work,

we have a degree of confidence in the reliability of the TF profiles.

2.4.3 Clustering TF profiles

We next sought a more unbiased examination of the TF activity profiles. Thus we turned to

clustering of TF profiles. Here we curated data using DBNascent (See Methods B.1)[218]. After

curating the data for sufficient quality and merging biological replicates we ended up with 126
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distinct data sets in basal conditions. Basal, or control, conditions are standard cultured cell lines

without a treatment condition. These conditions allow us to identify TFs that basally activated in

a cell line and drive cellular function. An additional 161 data sets were curated under perturbation

or genome modified conditions. These samples have a diverse array of treatments and allow us to

identify the TFs that respond to these perturbations or modifications in a cell type specific manner.

We used Ward’s method to cluster the TF activity profiles (using Euclidean distance) across the

DBNascent high-quality samples (287 distinct data sets). We found that the major determinant

in clustering was cell identity. This indicates that the TF profiles are successfully capturing both

ubiquitously active (TFs that promote cell viability) as well as TFs that drive cell identity (Fig.

2.6).

To develop our most confident baseline TF profiles we took the six cell lines with the most

data represented in control conditions and extracted consensus profiles (2.5B). Within these profiles

we capture TFs known to function in a given cell line. Some of these have known functions in the

given cell line, such as STAT and GATA functions in K562s. Other TFs identified have less well

annotated functions and are prime targets for follow-up experiments such as ZNF260 in ESCs and

IRF8 in HUVEC cells.

In addition to identifying cell type specific TFs, we also identify ubiquitously enriched TFs.

These TFs belong to a handful of well annotated TF families such as ETS, ATF and SP/KLF

families. These TFs have highly redundant TF binding motifs known to be generally related to

cellular proliferation and are often promoter associated (Fig. 2.7B). Additionally, they may play a

key role in permitting accessibility in transcriptionally active regions[257]. Due to the redundant

nature of these motifs – as many of them are high in GC content and highly repetitive – our

methodology precludes distinguishing between these TFs. There may be subtle differences in

which of these TFs is active in a given cell line, but at least a subset of these TFs are always

active regardless of cellular condition.

While there are only 4-6 TFs per cell line that are truly cell type specific, they are the major

determinant for clustering. Despite data coming from multiple nascent RNA sequencing protocols,
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sometimes over a decade apart and from dozens of distinct research groups the clustering is driven

by cell line, consistent with the idea that TFs are the major drivers of cell type identity.

Our next question was which PolII initiation regions are driving this signal within the profile.

To address this, we assessed the relative number of enhancer and promoter regions unique to a

given cell line, or shared across cell lines. We found that enhancers tend to be more unique to the

cell line, whereas promoters tend to be shared across cell lines (2.5C).

Since enhancers tend to be more cell line specific and promoters tend to be ubiquitous, we

tested which PolII initiation regions were driving the signal for each TF within the TF profiles.

In the ESC consensus profile, Nanog is a dominant factor. The vast majority of Nanog motif

containing regions in ESC cells (78.9%) are enhancers. Beyond that, when compared to the other

five consensus profiles the enhancer regions containing Nanog were disproportionately unique when

compared to the promoter distribution. This indicates that Nanog motif containing enhancers in

ESC cells are cell type specific. In the ubiquitously shared TF, KLF12, the regions driving the

signal tend to be promoter associated and shared between cell lines (Fig. 2.5D). Across TFs within

the TF profiles, cell type specific TFs typically regulate at unique enhancers and ubiquitous TFs

generally regulate at shared promoters (Fig. 2.7B).

2.4.4 Regulation at Transcription

Given that there is a bias in where classes of TFs regulate, we next tested whether there is

also a bias in the TF binding motifs. In this we found that the TFs regulating in more than one

cell line (shared TFs) tend to bind more GC rich regions, close to the average GC composition

at promoters. Whereas the motifs of cell type specific factors tend have base composition close to

genomic background (2.8A).

When compared to all TFs within HOCOMOCO there are a subset of TFs that bind AT

rich regions that aren’t called as active in any of our data sets. Therefore we searched the cell

type expression pattern of these TFs in the GTEX database and the single cell fetal human Atlas.

The vast majority of these TFs are expressed in cell types for which no nascent RNA sequencing
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has been done. For example, UNCX is a TF implicated in regulation of the cerebellum with an

AT-rich binding preference. No nascent sequencing experiment within DBNascent is represented

with this tissue type. Although if nascent RNA sequencing was done on that cerebellum, we would

anticipate that UNCX would be predicted as active and cell type specific via TF profiling. A more

detailed comparison to GTEx and single cell data sets is ongoing.

Importantly, TF perform distinct roles between general housekeeping mechanisms to defining

cell identity. Cell type specific TFs preferentially bind more GC poor regions that correspond to

cell type specific enhancers. These TFs likely establish cell type accessibility patterns. Other TFs

are more ubiquitously active and TFs tend to bind at shared promoters. These differences led

us to ask whether the TFs themselves are regulated at differently in the cell. To address this

question, we took the top significantly enriched TF for each cell type specific cluster, as well as

the top significantly enriched ubiquitously shared TF and plotted their cumulative distribution

function for the transcription level of the TF itself. We found that the cell type specific TFs fit

an exponential distribution, whereas the shared TFs fit a normal distribution (Fig. 2.8B). This

indicates that the expression of cell type specific factors is more cell type specific – indicating they

are regulated at transcription, as they not transcribed unless they are active within that cell line.

Ubiquitously shared TFs activity is not dependent on the transcription level of the TF, as these

TFs are always transcribed and at a wide range of levels across samples. When all TFs are assayed

for transcription level across samples, there is a bias towards exponential CDFs in cell type specific

TFs, and normal distributions for shared TFs. Additionally, when we assay published RNA-seq

data (n=1,408 samples), the trends observed here are reproduced, suggesting this is a fundamental

feature of the regulation of the TF itself.

For example, when we take the ubiquitously shared TF KLF12 and plot the expression of

this TF compared to the enrichment score there is no correlation between transcription level and

activity (Fig. 2.8C). While this TF is always active, it’s not being regulated at transcription. This is

observed across many ubiquitously shared TFs such as SP1 and ETV1 (Fig. 2.9A). When compared

to the cell type specific factor Nanog, the transcription level of the TF is positively correlated with
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the TF activity. This positive correlation affirms that these TFs are only transcribed in cell lines

in which they are actively regulating. The positive correlation between transcription level and

activity is observed in many cell line specific factors, including MyoD and GATA-2 (Fig. 2.9B).

This is perhaps important because these TFs may be the drivers of cell type specific enhancers,

in which opening these heterochromatin regions in inappropriate cellular contexts would lead to

aberrant transcription. Thus, the transcription of these TFs is shut down unless necessary within

a particular cellular context.

2.5 Discussion

Here we present a model for TF activity inference in which basally ON TFs can be extracted

from a single nascent RNA-sequencing experiment. We built a robust expectation model that

recapitulates the dinucleotide preferences surrounding PolII initiation sites at gene promoters as

well as distal enhancers. Using this model we are able to extract known and novel cell line specific

factors from over 70 cell lines, as well as shared regulatory factors that drive basal cellular function

and proliferation. Ultimately, this method provides a mechanism to assess ON TFs in any cellular

context in a single, high-throughput assay and analysis.

Using the ON TFs across various TF profiles we utilized hierarchical clustering to classify

TFs as either shared across cell lines or cell type specific. Using these classes we explored distinct

properties of these TFs, such as DNA binding preferences, motif biases, and transcriptional regu-

lation of gene encoding the TF itself. Future work for this study a deeper delve into inducible TFs

and how they fit within this TF class framework.

We find that shared transcription factors preferentially bind at promoters and have binding

motifs rich in GCs, a similar bias to that of promoters. These TFs tend to have a high degree of

redundancy within their motif preference – with many motifs having similar, simple recognition

sequences. Often these TFs are not essential, suggesting they may behave cooperatively to retain

DNA accessibility[257]. Related is the fact that regions with high GC content exclude nucleosomes

enabling higher accessibility for transcription to occur[72]. Shared TFs are enriched for roles in
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cellular proliferation such as the ETS, KLF and SP1 families[109, 199, 255]. We also note that

these TFs do not appear to be regulated at transcription, as their activity is not correlated with the

transcription level of the TF gene itself. So, it may be that shared TFs are constantly transcribed

at varying levels, and play more general roles at gene promoters to enhance accessibility and cell

viability.

In cell type specific TFs we find that they preferentially bind at enhancers and their binding

motifs have a nucleotide bias similar to genomic background, i.e. more AT rich. Additionally, cell

type specific TFs are not transcribed unless they are ON within a given cellular context. Taken

together we postulate that cell type specific factors not only drive cell identity but establish cell type

specific enhancers and open chromatin regions. These TFs are not transcribed unless essential for

a specific cellular outcome, otherwise they could possibly establish inappropriate enhancer regions

that subsequently induce aberrant transcriptional patterns. In all, our model identifies unique

sequence features inherent to cell type specific TFs, suggesting a model for the establishment of

cell type identity.
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Figure 2.1: Description of motif displacement scoring and models of background
nucleotide distribution. A) A cartoon representation showing a proximal TF motif (as PSSM)
relative to a single bidirectional and its PolII initiation (dashed line). B) Example heat maps
showing TF motif co-localization patterns relative to all bidirectional sites in a given data set.
More heat (darker red) indicates a higher motif concentration. The three heatmaps here show an
inactive TF (top), an activator (middle) and a repressor (bottom). The center of each heatmap is
the annotated PolII initiation region (µ). C) Positional base composition relative to sites of Pol II
initiation (dashed line) for promoters (top) and enhancers (bottom). D) Top is a graphical
representation of the flat, uninformative background model (left) and dinucleotide model (right).
Middle shows the observed (y-axis) versus expected (x-axis) MD-score plots for the flat,
uninformative background model (left) and the dinucleotide model (right). Bottom are
representative heat maps for an individual motif showing the resulting background distribution
obtained.
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Figure 2.2: Conditional Probabilities of dinucleotide model. A) Conditional probabilities
used to generate dinucleotide background model. From left to right are the conditional
probabilities of each nucleotide given the previous base is A, C, G and T, respectively. Two sets
of sequences were simulated within the model, promoter sequences (top) and enhancer sequences
(bottom). B) Normal distribution of PolII initiation region’s GC content. Promoters (defined by
bidirectionals within 1000bp of an annotated TSS in RefSeq) are shown in dark blue with a mean
GC content of 59.48%. Enhancers (defined as all bidirectionals that are not at promoters) are
shown in light blue with a mean GC content of 48.13%. The normal distributions between
enhancers and promoters are statistically different (KS-Test, p-value=0.00068).
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Figure 2.3: MD-scores calculated from ChIP-seq data compared to nascent PolII
initiation data. These heatmaps show the number of motif hits within a given region. Darker
red indicates more motif hits within the 150bp bin across that region. ChIP-seq data was pulled
from cistromeBD[167, 258]. Five independent experiments were chosen for each example (top to
bottom). A) Shows the cell type specific factor GATA1 in K562 cells. GATA1 ChIP-seq (left)
demonstrates high co-localization of GATA1 binding with the GATA1 motif, as expected since
ChIP-seq is how the GATA1 motif was defined. This is a low-throughput assay for annotating
enhancers, as only one epitope can be pulled down at a time. H3K27ac ChIP-seq (middle) is a
high-throughput assay to annotate enhancers. This data demonstrates that the broad histone
peaks lose precision on the GATA1 motif:enhancer co-localization. Precision is required for robust
MD-Score calculation. Finally, PolII initiation sites annotated from nascent sequencing data
(right) demonstrate how a high-throughput assay can be used to precisely capture GATA1
motif:PolII initiation co-localization for robust MD-Score calculation. B) Another example with
the cell type specific factor GRHL2 in MCF7 cells. Showing the co-localization of a given region
with the GRHL2 motif in GRHL2 ChIP-seq (left), H3K27ac ChIP-seq (middle) and PolII
initiation sites annotated from nascent sequencing data (right).
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Figure 2.4: Statistical test of ratio of observed to expected MD-score. A) The
dinucleotide model MD-score (expectation) and the experimentally determined MD-score
(observation) were calculated for all HOCOMOCO TFs (n=388) from each control data set
(n=126). The observed (y-axis) versus expectation (x-axis) for every TF from each control data
set (n=48,888) were plotted. The 75% inliers (purple) were fit to a linear equation resulting in a
slope of 1.00 and an intercept of 0.00. The 25% outliers (grey) were excluded from the linear fit.
B) The residuals of the inliers were fit to a normal distribution (purple) with µ=0.003 (dashed
purple line) and σ=0.018 (2σ at dashed grey lines). These values were used to calculate
significance values of every TF within the control data sets (n=48,888). C) Violin plots
demonstrating the number of TFs that are significantly enriched (ON-UP; red), depleted
(ON-DOWn; blue) or off (grey) per data set within control conditions. D) The dinucleotide model
MD-score (expectation, x-axis) and the experimentally determined MD-score (observation, y-axis)
were calculated for all HOCOMOCO TFs (n=388) from each perturbation or genetically modified
data set (n=161). The observed (y-axis) versus expectation (x-axis) for every TF from each
perturbation data set (n=62,468) were plotted. The 80% inliers (purple) were fit to a linear
equation resulting in a slope of 1.00 and an intercept of 0.00. The 20% outliers (grey) were
excluded from the linear fit. E) The residuals of the inliers were fit to a normal distribution
(purple) with µ=0.005 (dashed purple line) and σ=0.020 (2σ at dashed grey lines). These values
were used to calculate significance values of every TF within the perturbation data sets
(n=62,468). F) Violin plots demonstrating the number of TFs that are significantly enriched (red,
ON-UP), depleted (blue, ON-DOWN) or off (grey) per data set within perturbation conditions.
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Figure 2.5: Cell lines cluster by TF activity profile. A) Scatterplot of MD-scores expected
according to the dinucleotide model (x-axis) compared to those observed (y-axis) in an ESC data
set[219]. Each dot is a single TF’s PSSM with inferred activators are labeled in red (ON-UP) and
inferred repressors in blue (ON-DOWN). B) A two dimensional matrix where rows are control
data sets (publications with combined biological replicates of control conditions) and columns are
individual TFs. Entries in the matrix are colored red (activator, ON-UP), blue (repressor,
ON-DOWN), or white (inactive, OFF) depending on their inferred activity status. Ordering of
rows was determined by Ward clustering, which recovers the cell type utilized in the experiment
(labeled on left). For succinctness, only cell types with more than four experimental samples are
shown. The full data set is shown in Figure 2.6. C) Extent to which various cell types share a
given RNA polymerase initiation region. A consensus initiation region profile was generated for
each cell lines used to cluster in part B. The percentage of enhancer (light blue) and promoter
(dark blue) regions that are only in one cell line (left) are compared to up to shared in all all six
(right) cell lines are shown. D) The initiation regions within ESC cells containing either the cell
type specific Nanog motif (top) or the ubiquitously shared KLF12 motif (bottom) within 150bp of
µ were compared to the other five cell line’s initiation regions containing the same TF motif. In
ESCs, the Nanog motif predominantly appears in enhancers (light blue) and the KLF12 motif
resides predominantly within promoters. When compared to the other consensus regions, the ESC
Nanog motif containing enhancers tend to be more unique. The KLF12 promoters tend to be
shared across cell lines.
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Figure 2.6: Full matrix of TF activity profiles clustered. A more complete version of Figure
2.5, showing all control data sets (rows, n=126 data sets). Red text indicates that cell line is only
represented once within the curated sample set.
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Continued on next page.



44

Figure 2.7: Comparison of ChIP, motif and activity profiles. A) The fraction of all
initiation regions that correspond to promoters in all data sets (perturbation and control, n=287)
varies. All data sets with greater than 50% promoter fraction of bidirectionals were excluded from
all analyses. B) Fraction of events that are promoter associated (dark blue) versus enhancer
associated (white) for ChIP (left), sequence motifs (middle) and inferred TF activity (right). In
all cases, TFs are colored red if they were found ubiquitously on and green if they were on in a
more cell type specific fashion.
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Figure 2.8: Cell type specific TFs have recognition motifs that are more AT rich. A)
Violin plots of ubiquitously active (red), cell type specific (green) and all motifs (grey). Genome
background is ≈ 40% GC (bottom dashed line) but promoters are ≈ 60% GC (top dashed line).
B) CDFs of the gene RPKM for the top six most significant ubiquitously shared (red) or cell type
specific (green) TFs. Cell type specific TFs were chosen by the top most significant TF per cell
line represented in Figure 2.5B. C) Expression patterns of the gene encoding the TF (x-axis)
compared to its MD-score (y-axis) for a ubiquitously enriched TF, KLF12, which has a high GC
content motif (left) and a TF with a more tissue specific enrichment pattern, Nanog (right).
PSSM in lower left corner as a logo.
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Figure 2.9: Additional data of TF expression patterns compared to MD-score. More
examples of TF gene expression patterns compared to its MD-score genes with A) ubiquitously
enriched and B) cell type specific. Scatter plots as in Figure 2.8.



Chapter 3

Suppression of p53 response by targeting p53-Mediator binding with a stapled

peptide

The work in this chapter is as published in: Allen BL, Quach K, Jones T, Levandowski CB,

Ebmeier CC, Rubin JD, et al. Suppression of p53 response by targeting p53-Mediator binding with

a stapled peptide. Cell Reports 2022;39:110630. https://doi.org/10.1016/j.celrep.2022.110630[5].

All supplemental tables can be found with the published manuscript. Raw sequencing data can be

found at GSE135870 and GSE193418. Code associated with this project can be found at https:

//zenodo.org/record/6363472#.ZEg2OuzMKso. Figures 3.5-3.10 were published as supplemental

figures in published manuscript. Methods are discussed in Appendix B.2.

3.1 Contribution Statement

My main role in this publication was as the lead bioinformatician. When I joined this project

there was already nuclear RNA-seq data produced for four key conditions (DMSO, DMSO+bivalent

peptide, Nutlin-3a and Nutlin-3a+bivalent peptide) in two independent experimental designs. For

this data I performed mapping, trimming and quality control. While the data was of passing

quality the experiments were performed years apart by different scientists. I handled counting,

batch correction and differential gene analysis via DESeq2 and edgeR. I also applied EISA analysis

and quasR mapping, which utilizes the intronic reads to infer transcriptional impact of the bivalent

peptide from the nuclear RNA-sequencing[85]. I performed the pathway analyses, gene snapshots

and RNA-seq figure generation. Furthermore, I was responsible for RNA-seq data interpretation.

https://zenodo.org/record/6363472#.ZEg2OuzMKso
https://zenodo.org/record/6363472#.ZEg2OuzMKso
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Upon reviewer request, I produced polII serine5 ChIP-seq in the four conditions previously

stated in biological replicate. This experiment was a proxy for Mediator ChIP, which requires

far more cell input. The ChIP-seq performed was in approximately one million HCT116 cells

per condition, which is approximately 50-fold lower than the field standard. This was necessary

as the bivalent peptide was only available in limiting quantities. Regardless, I obtained data of

passing quality for the publication, and validated the experiments with ChIP-qPCR. Due to the

low cellular input a significant amount of ChIP optimization was required. This included bivalent

peptide treatment and timing optimization, chromatin shearing optimization, immunoprecipitation

and wash step optimization and finally library preparation and optimization for low input samples.

Upon sequencing, I handled mapping, trimming and quality control for the ChIP samples. Since we

needed a quantitative comparison I developed new code to normalize the data, ran basic differential

analyses in DESeq2 and edgeR as well as generating all ChIP related figures. Finally, I was

responsible for ChIP-seq data interpretation.

3.2 Abstract

DNA-binding transcription factors (TFs) remain challenging to target with molecular probes.

Many TFs function in part through interaction with Mediator, a 26-subunit complex that controls

RNA polymerase II activity genome-wide. We sought to block p53 function by disrupting the p53-

Mediator interaction. Through rational design and activity-based screening, we characterized a

stapled peptide, with functional mimics of both p53 activation domains, that blocked p53-Mediator

binding and selectively inhibited p53-dependent transcription in human cells; importantly, this

”bivalent peptide” had negligible impact, genome-wide, on non-p53 target genes. Our proof-of-

concept strategy circumvents the TF entirely and targets the TF-Mediator interface instead, with

desired functional outcomes (i.e. selective inhibition of p53 activation). Furthermore, these results

demonstrate that TF activation domains represent viable starting points for Mediator-targeting

molecular probes, as an alternative to large compound libraries. Different TFs bind Mediator

through different subunits, suggesting this strategy could be broadly applied to selectively alter
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gene expression programs.

3.3 Introduction

Sequence-specific, DNA-binding transcription factors (TFs) drive myriad physiological pro-

cesses and their mutation or disruption underlies many human diseases[140]. They are unquestion-

ably high-impact targets for molecular therapeutics. Unfortunately, TFs have proven difficult to

target with small molecules[35]; their DNA-binding domains are charged and similar to other TFs,

and their activation domains are typically unstructured and intrinsically disordered.

Among the estimated ≈1600 TFs in the human genome[138], p53 stands out for its general

importance in cancer biology[121, 122, 132]. Across many cell lineages, p53 functions as a tumor

suppressor and can paradoxically function as an oncogene if it acquires specific gain-of-function

mutations[82] p53 also plays key roles in mammalian development, aging, and stem cell biology.

Like many TFs, the p53 protein possesses a DNA-binding domain and an activation domain (AD).

The p53AD actually consists of two separate but closely-spaced domains, called AD1 (residues

13 – 29) and AD2 (residues 41 – 60). Whereas most transcriptional activation function can be

attributed to p53AD1[118, 119], loss-of-function p53AD1 mutations retain some ability to activate

specific subsets of p53 target genes, and mutation of both AD1 and AD2 is required to mimic a

p53-null phenotype[36, 117].

The human Mediator complex contains 26 subunits and is generally required for RNA poly-

merase II (pol II) transcription[137]. A four-subunit kinase module containing CDK8 or CDK19

can reversibly associate with Mediator to control its function[157], but the CDK-Mediator complex

was not a focus of this study. Mediator interacts extensively with the pol II enzyme and regulates

its function in ways that remain poorly understood; however, a basic aspect of Mediator function is

to enable TF-dependent activation of transcription. Mediator was discovered in S. cerevisiae using

an in vitro assay to screen for factors required for TF-dependent transcription[78], and similar

functions were confirmed for human Mediator complexes[79]. Because TFs do not interact with pol

II directly, these and other studies established that TFs regulate pol II function indirectly, through
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the Mediator complex. The p53 TF binds Mediator and this interaction has been shown to activate

p53 target gene expression in vitro and in cells[115, 172]. Oncogenic mutations in p53AD1 disrupt

p53-Mediator interactions[115] and this correlates with loss of p53 function[149]. Whereas specific

residues and structural details remain unclear, the p53-Mediator interface appears to involve the

MED17 subunit[115, 172]. Interestingly, other TFs (e.g. SREBP or nuclear receptors) activate

transcription through interactions with different Mediator subunits[114, 252].

Directly targeting TF activation domains has proven to be a difficult strategy to control TF

function. Here we sought to test whether the same outcome could be achieved by targeting Mediator

instead. We chose p53 as a test case because it is well-studied, biomedically important, and contains

a well-characterized activation domain. An apparent obstacle was that Mediator is large (1.4 MDa,

26 subunits) and its p53 interaction site is not precisely defined. However, we reasoned that the

p53 activation domain (residues 13 – 60) evolved to selectively interact with Mediator with high

affinity; supporting this concept, the p53AD alone can selectively purify Mediator from human

cell extracts[172], and mass spectrometry analysis of p53AD-bound factors revealed Mediator as

a top hit (Supplemental Tables 1,2). Consequently, we used the native p53AD structure and

sequence as a starting point, rather than screen thousands of drug-like compounds. To directly

assess p53-Mediator function, we used a defined in vitro transcription system that recapitulated

p53- and Mediator-dependent transcription. Biochemical results were tested further in human cells,

using genome-wide approaches. Collectively, these experiments establish that p53 activity can be

selectively controlled by targeting its interaction with Mediator.

3.4 Results

3.4.1 An in vitro assay to test p53-activated versus. basal transcription

To screen peptides for the ability to selectively block p53-dependent transcription, we required

an assay that enabled p53-dependent activation but that could also support basal (i.e. activator-

independent) transcription. We previously established an in vitro transcription assay (Knuesel
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et al., 2009) using purified human factors (Figure 3.1A). A key feature of this assay was that

both activated and basal transcription could be reconstituted on naked DNA templates (i.e. DNA

templates not assembled into chromatin). To adapt this assay for purposes of measuring basal

versus. p53-activated transcription, we generated templates with Gal4 DNA binding sites upstream

of a TATA-containing promoter sequence (Figure 3.5A, B). Upon titration of a Gal4 DNA Binding

Domain-p53 Activation Domain (AD; residues 1-70) fusion protein into this system, we observed pol

II-dependent transcription that was dependent on p53AD and Mediator (Figure 3.5C). Reactions

containing Gal4-p53AD generally produced about two- to four-fold more transcripts compared to

reactions with no activator (Figure 3.5C). Because experiments without Gal4-p53AD produced a

low level of basal transcription that could be quantitated, this system allowed assessment of both

p53-activated and basal transcription.

3.4.2 Design and synthesis of stapled peptides

We designed hydrocarbon-stapled peptide mimetics of the AD1 and AD2 regions of p53.

Hydrocarbon-staples were employed to promote helicity within the peptides. Hydrocarbon-stapled

peptides have previously been developed to mimic the α-helical portion of p53AD1 that binds

MDM2/MDM4 with the goal of blocking the p53-MDM2/MDM4 interaction and restoring wild-

type p53 activity[24, 39]. For the p53AD1 mimetics, we synthesized N-acetylated versions of the

penta-arg-containing peptides BP1.2 - BP1.7[196], which are based on residues 14-29 of p53 (Figure

3.1B). This panel of peptides contains an i, i+7 hydrocarbon staple at positions 20 and 27 and five

arginine residues grafted into various positions, which were originally introduced to improve peptide

cytosolic access and nuclear localization[196]. For the p53AD2 mimetics, we designed a panel of

hydrocarbon-stapled peptides that varied the length and position of the hydrocarbon staple and

spanned residues 45-57 of p53 (Figure 3.1C). The panel included two peptides with an i, i+7

hydrocarbon staple (AD2-1 and AD2-2), two peptides with an i, i+4 staple (AD2-3 and AD2-4),

and one peptide with an i, i+3 staple (AD2-4). Furthermore, both stapled and unstapled variants

of the p53AD2 peptides were generated.
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3.4.3 Functional screening of stapled peptide mimics of p53AD1 and p53AD2

Starting with the stapled p53AD1 peptides, we tested whether any would block p53-dependent

transcription activation without inhibiting basal transcription. Initial screens were completed with

5 µM of each peptide (BP1.2 – BP1.7; Figure 3.1B). At this concentration, all peptides reduced

p53 activated transcription, but BP1.4 and BP1.5 did not affect basal transcription (Figure 3.5D).

In follow-up experiments, we observed that the BP1.5 peptide negatively affected basal transcrip-

tion to some degree, in contrast to BP1.4 (Figure 3.5E). We therefore chose the BP1.4 peptide for

further testing (also see below). To determine a concentration range in which the BP1.4 peptide

selectively blocked p53-activated transcription but not basal transcription, we titrated BP1.4 into

transcription reactions at concentrations between 0.9 µM and 9 µM (Figure 3.5F). Interestingly,

BP1.4 activated basal transcription at concentrations of 4 µM and above, which could reflect weak

binding of BP1.4 to Mediator (i.e. mimicking p53AD) to promote transcription activation. Con-

sistent with this result, promoter-bound pol II complexes are activated upon p53-Mediator binding

in vitro[172]. Although basal transcription was inhibited at the 9 µM titration point, the weak

BP1.4-dependent activation made the determination of the IC50 for basal transcription impossible

using an inhibitor response curve. The IC50 describing the inhibition of p53-activated transcription

by BP1.4 was 3.2 ± 0.2 µM (Figure 3.5G). The concentration window in which BP1.4 selectively

blocked activated transcription was therefore relatively narrow, but this issue was circumvented

with next-generation peptides (see below). We next tested the p53AD2 peptides (Figure 3.1C) in a

similar manner. In contrast to the p53AD1 peptides, the p53AD2 peptides either had no effect on

p53-activated transcription or non-specifically inhibited both p53-activated and basal transcription

at 5 µM (data not shown). Testing further at different peptide concentrations (i.e. increasing

concentration if no activity was observed at 5 µM or decreasing concentration if both activated

and basal transcription were inhibited) did not reveal any p53AD2 peptides with specificity for

p53-activated transcription. These results were not entirely unexpected, as p53AD2 plays a lesser

role (versus. p53AD1) in activation of p53 target genes in vivo[36, 117–119].
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3.4.4 A bivalent peptide selectively blocks p53-dependent activation in vitro

We hypothesized that covalently linking two peptides with low-to-moderate affinity could

generate a cooperatively binding “bivalent” peptide with improved ability to inhibit p53-dependent

activation. Given the inactivity of the p53AD2 peptides tested, we elected to tether the BP1.4

peptide to the wild type p53AD2 sequence. In this way, we hoped to generate a competitive

inhibitor of p53AD-Mediator binding by recapitulating the combined landscape of p53AD1/AD2

interactions. And because the p53AD1 portion was stapled (e.g. BP1.4), it would permanently

retain the α-helical state, lowering the entropic cost of binding to more effectively compete with

WTp53 for Mediator binding. We synthesized and tested three bivalent peptides (BP1.4 + p53AD2

sequence) that contained a 2-, 6- or 10-unit polyethylene glycol (PEG) linker (bivalent peptide 1,

2, or 3; Figure 3.6A). Notably, the bivalent peptides were significantly more potent inhibitors of

p53-activated transcription than BP1.4 alone. As shown in Figure 3.6B, bivalent peptides (500

nM) containing either a 6- or 10-unit PEG linker (i.e. bivalent peptide 2 or 3) inhibited p53-

activated but not basal transcription. By contrast, the bivalent peptide with a 2-unit PEG linker

(i.e. bivalent peptide 1) did not inhibit transcription at 500 nM (Figure 3.6B). We additionally

compared bivalent peptides BP1.4 and BP1.5 with the PEG6-linker and found that BP1.4 was

slightly more potent (Figure 3.6D, E). Because the bivalent peptide containing a 6-unit PEG linker

(i.e. BP1.4PEG6p53AD2; bivalent peptide 2) was easier to synthesize versus. 10-unit PEG, it was

used for all future experiments. For simplicity, this molecule (bivalent peptide 2, Figure 3.6A) will

be called the “bivalent peptide” throughout this paper. The in vitro transcription assays on naked

DNA templates demonstrated improved potency of the bivalent peptide and also confirmed that it

inhibited p53-activated transcription but not basal transcription. We next tested its function on

more physiologically relevant chromatin templates, in which basal transcription is repressed. In fact,

a TF activation domain (such as p53AD) and Mediator are required for transcription on chromatin

templates[172, 185], presumably due to the ability of Mediator to relay the activation signal from the

TF directly to the pol II enzyme. In vitro transcription assays with chromatin templates revealed
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that the bivalent peptide had an IC50 of 85 nM when added to reactions with Gal4-p53AD. By

contrast, the BP1.4 peptide alone had an IC50 of 330 nM in these assays (Figure 3.2A, B). Upon

introduction of a QS mutation into p53AD2, which blocks its activation function in vivo[117], the

IC50 increased to 713 nM, about eight-fold higher than the bivalent peptide and two-fold higher than

BP1.4 alone (Figure 3.2A, B). Collectively, these results indicate that both p53AD1 and p53AD2

contribute to Mediator-dependent transcriptional activation in vitro. We next assessed whether the

bivalent peptide would selectively block p53-dependent transcription compared with VP16, a viral

activation domain. Whereas p53 and VP16 both interact with Mediator[115, 175, 233], they do so

through different subunits (MED17 and MED25, respectively). In contrast to Gal4-p53AD (85 nM),

the bivalent peptide had an IC50 of 424 nM in the presence of Gal4-VP16 (Figure 3.2C, D). These

data, which resulted from experiments in which the only difference was the TF activation domain

(i.e. identical DNA templates; identical TF DNA-binding domains), indicated that the bivalent

peptide selectively blocked the p53–Mediator interaction versus. the VP16–Mediator interaction;

this was further supported by biochemical data (see below). The reduced transcription with Gal4-

VP16 at much higher concentration of bivalent peptide likely reflects transcriptional squelching, in

which high levels of TF activation domains repress transcription in vitro or in cells, presumably

through competition for binding of co-activators such as Mediator[78, 87, 173].

3.4.5 Bivalent peptide directly inhibits p53AD-Mediator interaction

To further test whether the bivalent peptide would selectively block the p53AD–Mediator

interaction, we performed a series of biochemical experiments, as outlined in Figure 3.7A. The

p53AD can bind Mediator with specificity and apparent high affinity[115]; for example, the p53AD

itself is sufficient to selectively isolate Mediator from partially purified cell extracts[172]. As shown

in Figure 3.7B, p53AD binding to Mediator was markedly reduced (approximately 60% bound

versus. no peptide controls) in the presence of the bivalent peptide; by contrast, the bivalent peptide

did not reduce VP16AD binding to Mediator (Figure 3.7C). Furthermore, a QS mutation abolished

the ability of the bivalent peptide to block Mediator binding (Figure 3.7B). These data are consistent



55

with in vitro transcription results (Figure 3.2) and reveal that the bivalent peptide directly blocks

p53AD–Mediator interactions. ChIP-seq experiments in HCT116 cells showed general agreement

with these in vitro binding results, as described below.

3.4.6 Bivalent peptide suppresses p53 activity in Nutlin-stimulated cells

Prior analysis of the BP1.4 peptide showed that it is not effectively taken up by cells[196],

and given its larger size, the bivalent peptide was expected to have poor cellular uptake. To

circumvent this issue, we used a well-tested protocol to enhance cell uptake of the bivalent peptide

(see Methods). HCT116 cells were evaluated either in the presence of bivalent peptide (Figure

3.3A) or vehicle (water), with or without Nutlin-3a. Nutlin-3a is a small molecule that activates

and stabilizes p53 by inhibiting MDM2, a repressor of p53[229]. A 3h treatment time was used based

upon experiments that showed the bivalent peptide was biologically active for only a limited time

in cells (see Methods). After 3h Nutlin-3a treatment (or DMSO control, bivalent peptide), nuclear

RNA was isolated and biological replicate RNA-seq libraries were prepared (Supplemental Table 3).

As expected, Nutlin-3a induced expression of p53 target genes (Figure 3.3B; GSEA Figure 3.8A,

Supplemental Table 4, RT-qPCR Figure 3.8C), consistent with previous studies in HCT116 cells[6].

Strikingly, however, Nutlin-induced activation of p53 target genes was diminished in cells treated

with the bivalent peptide (Figure 3.3C; GSEA Figure 3.8B, RT-qPCR Figure 3.8C). Inhibition

by the bivalent peptide was observed across a core set of p53 target genes shown by reduced

enrichment in GSEA (Figure 3.3D, Supplemental Table 5). An additional set of control RNA-seq

experiments was completed, in biological triplicate, to test whether serum-free media[39, 46] would

influence bivalent peptide activity (see Methods). The data (RNA-seq experiment 2; Figure 3.9A,

B) were consistent with the first series of biological replicates (RNA-seq experiment 1, Figure 3.3B-

D, Figure 3.4A, B, Supplemental Table 4), despite a reduced p53 response to Nutlin. Collectively,

these results indicated that the bivalent peptide inhibits activation of p53 target genes in human

cells, consistent with the in vitro results.
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3.4.7 Bivalent peptide has negligible transcriptional effects in absence of p53

activation

An expectation of our experimental strategy was that the bivalent peptide, which was de-

signed based upon p53AD structure, would selectively block p53 function. HCT116 cells express

hundreds of sequence-specific, DNA-binding TFs, including high-level expression of TFs that define

the cell lineage[104]. For HCT116 cells, these TFs include SREBF1, ELF3, JUNB, NR2F1, and

MYC. To assess the general impact of the bivalent peptide on pol II transcription, we compared

RNA-seq data from cells without Nutlin treatment, in the presence or absence of bivalent pep-

tide. The data revealed that the bivalent peptide had no significant impact on pol II transcription,

genome-wide, in unstimulated HCT116 cells. For example, only one gene (MT1M) changed signif-

icantly, out of 28,260 transcripts analyzed (Figure 3.3E), and similar results were observed in the

second set of RNA-seq experiments (Figure 3.9C; RT-qPCR Figure 3.8D). Whereas the volcano

plots show fold-change effects with a significance cutoff, GSEA instead reports on trends within a

ranked gene list. Interestingly, GSEA results for peptide-treated versus. untreated cells (no Nutlin

treatment) showed evidence for modest activation of a small number of pathways, including the p53

pathway (Figure 3.9D). This observation could reflect an ability of the bivalent peptide to mimic

p53AD-Mediator binding to activate transcription (as suggested in vitro for the BP1.4 peptide,

Figure 3.5F) and/or an ability to reduce MDM2 or MDM4 binding to p53 in HCT116 cells. Taken

together, the RNA-seq data from Nutlin-stimulated or uninduced cells (i.e. not treated with Nut-

lin) indicate that the bivalent peptide is selective for p53 and does not inhibit other TF-Mediator

interactions that would otherwise more broadly impact pol II transcription.

3.4.8 Reduced pol II occupancy in peptide-treated cells

ChIP-seq experiments were completed to further probe the effects of the bivalent peptide.

We emphasize that ChIP-seq experiments have limitations because data are collected at a single

time point, whereas RNA-seq can better represent cumulative effects following a stimulus. The
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timing for ChIP-seq was chosen to be 3hr post-Nutlin, based upon ChIP-qPCR experiments at

the p21/CDKN1A locus (Figure 3.10A). This time point matched that of the RNA-seq experi-

ments. ChIP-seq analysis of Mediator itself was not feasible based upon the low cell numbers

required (ca. 1 million cells/replicate) due to limited quantities of the bivalent peptide. Because

the genomic occupancy of Mediator correlates with pol II recruitment and transcription[243] , we

completed ChIP-seq experiments for ser5-phosphorylated pol II, whose levels peak at gene 5’-ends

(i.e. promoter-proximal regions). The ChIP-seq data showed increased ser5-phosphorylated pol

II occupancy at the 5’-ends of p53 target genes in Nutlin-treated cells, as expected. The bivalent

peptide reduced pol II levels at gene 5’-ends, in agreement with the RNA-seq data (Figure 3.4A, B;

Figure 3.10B, C) and consistent with in vitro data that showed inhibition of p53-Mediator binding

by the bivalent peptide. Note that the bivalent peptide decreased pol II occupancy at most but

not all p53 target genes (Figure 3.10D), perhaps reflecting differential timing of Nutlin induction.

Collectively, the RNA-seq and ChIP-seq data were consistent with the in vitro results and demon-

strated that the bivalent peptide 1) blocks transcriptional activation by p53 and 2) has negligible

impact on pol II transcription in general; that is, at genes responsive to other TFs (Figure 3.4C).

3.5 Discussion

Whereas few TF-Mediator interactions have been characterized in detail, the importance of

bivalent or multi-valent interactions is an emerging theme[57, 102]. Our results demonstrate the im-

portance of both p53 activation domains in Mediator-dependent transcription activation. A bivalent

interaction may be required to selectively bind Mediator, as other proteins are bound by p53AD1 or

p53AD2 individually[73, 149] or can have their affinity enhanced by p53AD phosphorylation[131].

For instance, p53AD phosphorylation will increase its binding affinity for CBP/p300[73]. The

stapled, bivalent peptide is likely a poor substrate for site-specific phosphorylation, which may

contribute to its effectiveness in cells. However, we cannot exclude the possibility that other func-

tionally relevant interactions are influenced by the bivalent peptide, which may contribute to its

cellular activity.
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Although p53 normally functions as a tumor suppressor, gain-of-function p53 mutations are

common and can be oncogenic[82, 121]; thus, blocking the activity of such p53 mutants is a viable

therapeutic strategy[38]. Recent work has also shown that suppression of p53 function may have

applications for tissue regeneration[217] or to prevent drug resistance[241]. Stapled peptides have

shown promise as molecular therapeutics[178], and peptide drugs represented approximately $50

billion in U.S. sales in 2019, with more than 50 new drug approvals over the past 20 years[180].

The strategy outlined here demonstrates that stapled peptides derived from TF activation domains

can be effective molecular probes; however, further optimization is required for potential clinical

use. Our staple design for p53AD1 was based upon previous studies[24] and enforces an α-helical

conformation. Future experiments are needed to structurally define the p53-Mediator interface

targeted by the bivalent peptide. Indeed, whereas biochemical data suggest that p53 interacts

with the MED17 subunit[115], precise details about the molecular interface are lacking. Among

Mediator subunits, MED17 is noteworthy because it represents a core structural subunit, along

with MED14[256]. Data from yeast suggest that MED17 may be more important for pol II tran-

scription, genome-wide, compared with MED14[107, 225]. Given the central role for p53 in diverse

physiological functions, its interaction with MED17 may ensure robust p53 responses independent

of MED14 status or cell type.

Historically, TFs have been intractable as therapeutic targets, although progress has been

made[42]. This proof-of-concept study suggests that desired transcriptional outcomes can be

achieved by avoiding the TF entirely and targeting the human Mediator complex instead. Ad-

ditional support for this concept was provided by Arthanari et al.[183], in which the Med15-Pdr1

interaction was blocked with a small molecule in yeast (C. glabrata). Analogous to our results

with p53, they showed that disruption of the Mediator-Pdr1 interaction prevented activation of

Pdr1 target genes in yeast cells. Whereas many, if not most, TFs target the Med15 subunit in

yeast[210], TFs bind many different sites on human Mediator[194]. An implication is that blocking

a single Mediator-TF interaction will not affect other signal-responsive or lineage-specific TFs, thus

providing a means to selectively alter gene expression patterns. Our results suggest this strategy
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could be applied toward p53 and other human TFs that target distinct Mediator subunits.

3.6 Limitations of this study

The RNA-seq experiments were completed with nuclear RNA after only 3hr Nutlin treatment,

to better capture direct versus. indirect effects. Analysis across longer time points could reveal more

gene expression changes from peptide treatment, but this would also increase the contribution from

indirect effects due to p53 activity changes. Whereas the in vitro experiments can reliably assess

direct p53-Mediator effects and mechanism, the complexity of factors (i.e. proteins, nucleic acids,

metabolites) that converge on active genes in human cells prevents a complete understanding of

cellular mechanisms. We could not obtain Mediator ChIP-seq data to assess its recruitment in cells;

our ChIP-seq experiments were limited to about 1 million cells/replicate due to limited amounts

of the bivalent peptide. This is about 50-fold less than typical for pol II ChIP-seq[11] and over

100-fold less than published Mediator ChIP-seq experiments[197].

There are some caveats regarding the data within this manuscript. Regarding the RNA-

seq, the main source of variance within the RNA-seq data is between the biological replicates.

Less than 5% of the variance could be attributed to the p53 response to Nutlin, likely due to the

experiments being done at times years apart by different scientists. After batch correction, there

is a mild p53 response observed when expected. p53 is the strongest perturbation response, but

we likely lost a lot of the more subtle responses due to this replicate problem. This issue is more

exacerbated in RNA-seq experiment set 2. Regarding the ChIP-seq, while the data was passing

quality it was on the lower end in regards to polII Ser5 enrichment. There were two samples failed

qc (DMSO+bivalent peptide and Nutlin+bivalent peptide in biological replicate one) and I was

unable to reproduce due to limiting amounts of bivalent peptide. Since they did not pass quality

metrics they were excluded from subsequent analyses. Normalization was performed but due to low

complexity of the samples, and two samples failing, in depth statistical analysis were not practical.

For this reason, the ChIP-seq data was mainly used to validate trends observed in the RNA-seq.
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Figure 3.1: Human factors and peptides used for the in vitro transcription assays. (A)
Purified PIC factors. (B) WT p53AD1 sequence and sequences of p53AD1 peptides containing
diverse penta-arg motifs. (C) WT p53AD2 sequence and sequences of p53AD2 peptides. (D)
Residues Z, X, and B represent α,α-disubstituted amino acids with olefin tethers for
hydrocarbon-stapling. Unstapled structures shown.
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Figure 3.2: In vitro transcription on chromatin templates reveals bivalent peptide is a
potent and selective inhibitor of p53-dependent transcription. (A) IC50 plot showing
activity of bivalent peptide (n = 3 to 8 biological replicates) versus. BP1.4 (stapled p53AD1
mimic; n = 2 to 6 biological replicates) or a bivalent peptide with a mutated p53AD2 region (n =
3 to 9 biological replicates). (B) Representative data from experiments plotted in A. (C) IC50
plot showing that bivalent peptide is selective for p53; repressive activity is reduced with
GAL4-VP16 (n = 2 to 6 biological replicates), which binds a different Mediator subunit compared
with p53. (D) Representative data from experiments plotted in C. Vertical lines in plots represent
standard error of the mean (panel A, C).
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Continued on next page.
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Figure 3.3: The bivalent peptide blocks activation of p53 target genes but has
negligible effect on pol II transcription in the absence of p53 activation. (A) Schematic
of the stapled, bivalent peptide. (B) Volcano plot showing significant induction of p53 target
genes upon Nutlin treatment. (C) Volcano plot showing that the bivalent peptide reduces
expression of p53 target genes in Nutlin-treated cells. (D) Enrichment score (GSEA) heatmap for
Nutlin and Nutlin+peptide at a core set of p53 target genes. The p53 pathway is the most
significantly altered pathway in both contexts: most upregulated in Nutlin and most
downregulated in Nutlin+peptide (Figure 3.8A, B). (E) Volcano plot showing that the bivalent
peptide causes virtually no significant changes in pol II transcription in the absence of p53
activation. Whereas MT1M met the significance cutoff, the data showed an outlier in one DMSO
replicate, suggesting it does not reflect a true biological difference (see Methods). RNA-seq data
were obtained in biological replicate.

Figure 3.4: Representative RNA-seq and ChIP-seq data; model. (A) RNA-seq traces at
the p53 target gene BTG2, showing bivalent peptide blocks Nutlin-dependent activation. The
y-axis is read-depth normalized read density. RNA-seq data were obtained in biological replicate.
(B) ChIP-seq traces showing decreased pol II CTD Ser5P occupancy at the BTG2 promoter
region in bivalent peptide-treated cells. The y-axis is normalized read density (see Methods);
ChIP-seq data were obtained in single or biological replicates (see Methods). (C) Model. The
bivalent peptide effectively competes with p53 to reduce its binding to Mediator, which reduces
activation of p53 target genes. At non-p53 target genes, which are activated through other
TF-Mediator interactions (via different Mediator subunits), the bivalent peptide has minimal
impact on pol II transcription.
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Figure 3.5: In vitro screening protocol; functional screening of stapled and unstapled
p53AD1 mimics. (A) Promoter DNA template scheme. (B) Overview of reconstituted in vitro
transcription assay (chromatin assembly optional; PIC = Pre-Initiation Complex: TFIIA, TFIIB,
TFIID, TFIIE, TFIIF, TFIIH, Mediator, and pol II). (C) Representative in vitro transcription
data from naked DNA templates, showing p53- and Mediator-dependence. (D) Representative
data (in vitro transcription) using each peptide at 5 µM concentration, in presence (+) or absence
(-) of GAL4-p53. Note that only BP1.4 and BP1.5 show ability to inhibit p53-activated
transcription while not markedly affecting basal transcription. (E) Scatter plot summarizing in
vitro transcription data for BP1.4 and BP1.5 peptides in absence (basal) or presence (activated)
of GAL4-p53. Dashed line represents basal transcription level. (F) Representative data (top) and
scatter plot (bottom) summarizing results from titration experiments with BP1.4 peptide under
basal (- GAL4-p53) or activated (+ GAL4-p53) conditions. (G) IC50 plot summarizing inhibitory
activity of BP1.4 peptide. For data panels (D-G), transcription was normalized to GAL4-p53 in
absence of added peptide.
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Figure 3.6: Testing different PEG linker lengths to tether BP1.4 (stapled p53AD1
mimic) to p53AD2 sequence. (A) Schematic of 3 different PEG linkers to generate bivalent
peptide 1, 2, or 3. (B) Representative in vitro transcription data and (C) bar plot summary (n =
4; bars = s.e.m.) of bivalent peptides with different PEG linker lengths. Note that a PEG6 or
PEG10 linker showed enhanced ability to block p53-activated transcription, whereas PEG2 linker
(i.e. bivalent peptide 1) did not. (D) IC50 plot showing activity of bivalent peptide (i.e.
BP1.4PEG6AD2WT) versus. an AD1 derivative (BP1.5). Points with error bars represent
standard error of the mean, with n = 3 to 8 (blue dots) or n = 3 to 4 (red squares). The IC50
value for BP1.5PEG6AD2WT was 200 ± 88nM whereas the IC50 for the bivalent peptide
BP1.4PEG6AD2WT was 85 ± 11nM (see Figure 3.2). (E) Representative in vitro transcription
data used for the plot in panel D.
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Figure 3.7: Bivalent peptide blocks p53AD-Mediator binding. (A) Overview of binding
assays used. A crude Mediator sample was isolated from HeLa NE with a GST-SREBP affinity
column [181] prior to incubation with p53AD (2 µM) ± bivalent peptide (5 µM) in one of the
protocols (right). Inset: silver-stained gel of the MED1 IP, showing a relatively pure Mediator
sample. (B) Scatterplot (left) summarizing p53AD binding to Mediator in presence of bivalent
peptide or a QS mutation in p53AD2. The percent binding is relative to p53AD bound to
Mediator in absence of added peptide (dashed line); p53AD quantitation was normalized to total
Mediator, as assessed by quantitation of MED15 signal (and/or MED1 in some cases; n = 4
biological and 6 total replicates). Representative data (western blot) shown at right. Similar
results were obtained with either protocol shown in panel A. (C) Binding assay shown at right in
panel A was used to probe VP16-Mediator binding (n = 2), which revealed that VP16-Mediator
binding is not inhibited by the bivalent peptide. Normalization of bound GST-VP16 to MED15 in
fact showed a 1.67-fold increase in Mediator-bound VP16 in the +peptide experiments.
Representative western blot shown. Asterisk: free GST.
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Figure 3.8: Additional RNA-seq results and supporting RT-qPCR data. (A, B) GSEA
moustache plots (RNA-seq experiment 1) that show (A) Nutlin treatment strongly induces p53
pathway activation (NES: 3.07), as expected, and that (B) in Nutlin-treated cells, the bivalent
peptide inhibits p53 pathway activation (NES: -2.13). (C, D) RT-qPCR results are consistent
with RNA-seq data and show suppression of p53 target gene expression by the bivalent peptide
(C) or negligible effects in the absence of Nutlin-dependent p53 activation (D). Bars represent
standard error of the mean (n = 2).
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Continued on next page.
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Figure 3.9: Bivalent peptide blocks p53 response in Nutlin-treated HCT116 cells, but
causes no significant changes in pol II transcription in absence of p53 activation
(RNA-Seq experiment 2); evidence for weak p53 activation in DMSO control +
peptide experiments. (A, B) GSEA moustache plots (RNA-seq experiment 2) show (A) Nutlin
treatment induces p53 pathway activation (NES: 1.75), and that (B) in Nutlin-treated cells, the
bivalent peptide inhibits p53 pathway activation (NES: -1.45). Note that RNA-seq experiment 2
(biological triplicate samples) differed from RNA-seq experiment 1 (biological replicate samples)
in that serum-free media was used, based upon reports that it could enhance peptide uptake by
cells [39, 46]. In retrospect, this likely ensured a weak Nutlin response due to p53 activation
triggered by serum removal [28, 216]. Consistent with this notion, the p53 pathway activation was
markedly reduced in Nutlin-treated cells (NES: 1.75) compared with experiment 1, with GSEA
NES = 3.07 for p53 pathway in Nutlin-treated cells (Figure S3.8A). Despite these limitations,
GSEA results from RNA-seq experiment 2 show suppression of p53 activation by the bivalent
peptide. (C) Volcano plot showing that the bivalent peptide causes no significant changes in pol
II transcription in the absence of p53 activation (RNA-seq experiment 2). These results are
similar to RNA-seq experiment 1 (Figure 3.3E). (D) GSEA moustache plot (RNA-seq experiment
1) comparing DMSO control conditions ± bivalent peptide. Note a weak p53 pathway activation
(NES=1.66) that is consistent with in vitro data (Figure S3.5F); in cells, the weak activation could
reflect a modest disruption of p53-MDM2 interactions, but this remains to be rigorously tested.
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Figure 3.10: Summary of pol II CTD Ser5P ChIP-seq data. (A) Time-course ChIP- qPCR
that provided the basis for a 3hr post-Nutlin time point for ChIP-seq experiments. This time
point is identical to that used for RNA-seq. (B) ChIP-qPCR at the p21/CDKN1A locus, showing
i) increased pol II occupancy in Nutlin-stimulated cells but ii) reduced pol II occupancy in cells
treated with the bivalent peptide. (C) Example pol II CTD Ser5P ChIP-seq traces at p53 target
gene promoters. Consistent with the RNA-seq data, pol II occupancy is increased in
Nutlin-treated cells, but pol II occupancy is reduced in cells treated with the bivalent peptide.
(D) Summary heatmap at core p53 target genes [9] showing overall reduced pol II occupancy at
promoter regions (see Methods). The heatmap represents the log2(Nutlin+Peptide/Nutlin
adjusted read counts) in which blue indicates a reduction of pol II occupancy in the
Nutlin+peptide versus. Nutlin samples. The separate black- and-white heatmap represents the
average Signal-to-Noise Ratio (SNR) normalized read counts, derived from the CHIPIN method
[193]. Promoters with higher read density will have darker shading. (E) Ser5P pol II ChIP-seq
metagene at the TSSs of a subset of p53 target genes. Note that ChIP-seq provides data at a
snap-shot in time, whereas RNA-seq represents cumulative effects over time. Thus, we observe
two populations of responses at p53 target genes [9] as seen by ChIP-seq (t = 3hr) in which the
adjusted read density in Nutlin+Peptide sample compared to Nutlin is either unchanged or higher
(27 TSSs) or lower (70 TSSs). This probably reflects differential induction of p53 target genes at
the t = 3hr time point and is also reflected in the heatmap in panel D. The ChIP-seq metagene
shown is derived from the set of 70 TSSs and shows that Nutlin + bivalent peptide has lower
Ser5P pol II occupancy compared with Nutlin, which is overall consistent with the RNA-seq data.



Chapter 4

The naturally occurring ∆40p53 isoform inhibits eRNA transcription and

enables regulation by signal-specific transcription factors during p53 activation

The work in this chapter is as published in: Levandowski CB, Jones T, Gruca M, Ramamoor-

thy S, Dowell RD, Taatjes DJ. The ∆40p53 isoform inhibits p53-dependent eRNA transcription

and enables regulation by signal-specific transcription factors during p53 activation. PLOS Biol-

ogy 2021;19:e3001364. https://doi.org/10.1371/journal.pbio.3001364[142]. All supplemental tables

can be found with the published manuscript. Raw sequencing data can be found at GSE147703

and GSE227931. Figures 4.5-4.23 were published as supplemental figures in published manuscript.

Methods are discussed in Appendix B.3.

4.1 Contribution Statement

The lead scientist for this project was Dr. Cecilia Levandowski, and it embodied the bulk of

her graduate work. I joined this project as a junior graduate student to learn from Dr. Levandowski.

On this project from the wet-lab perspective I took over cell culture work, aided in growth rate, flow-

cytometry and metabolimics experiments and aided in preparing PRO-seq, RNA-seq and ChIP-seq

libraries. I aided in the TP63 knockdown experiments and individually completed all of the follow

up qPCR. I also completed all of the validation qPCR of two additional CRISPR clones per genome

edited MCF10A cell line. From the dry-lab perspective I analyzed the bulk of the data in the

publication with the help of Margaret Gruca.

In terms of NGS library preparation I produced two additional PRO-seq libraries in MCF10A
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cells. There are a total of four conditions: WT MCF10A +/- Nutlin-3a and p53 null MCF10 +/-

Nutlin-3a. One biological replicate was produced with the help of Dr. Levandowski, the other I

produced independently. With these samples I also ran qPCR experiments to validate that the

WT sample showed an expected p53 response to Nutlin-3a but the p53 null sample did not. I

helped produce an additional RNA-seq data set in the three genome edited MCF10A cells +/-

5-fluorouracil (5FU). Finally, I optimized and helped perform the p53 ChIP-seq experiments in the

three genome edited MCF10A cells +/- Nutlin-3a. This optimization entailed a complete ChIP

protocol optimization that integrated techniques used by four separate academic labs.

In terms of data analysis, I aided or completed analysis for all three NGS library types. For

PRO-seq, I performed the bidirectional calling and analysis[18]. Using the curated bidirectionals

I ran transcription factor enrichment analyses, including that done by TFEA[207]. I ran the

differential expression analysis by DESeq2 and pathway analysis by GSEA in conjunction with

Ms. Gruca. I performed the in depth analyses comparing the DESeq2 and GSEA results across

conditions, as well as generating all finalized figures related to PRO-seq for this manuscript. Within

the PRO-seq samples I validated that each sample had the expected coverage of the p53 trans-

activation-domain 1, that is missing in the ∆40p53 isoform. In RNA-seq, I performed mapping,

trimming, quality control, differential analysis and pathway analysis in conjunction with Ms. Gruca.

I fully analyzed an additional, publicly available data set [251] with 5-FU treatment to corroborate

our findings within this manuscript. I performed the in-depth comparisons between the RNA-

seq and PRO-seq results. Finally, I generated all finalized figures related to RNA-seq for this

manuscript. In regards to ChIP-seq, I performed all mapping, trimming, quality control and

analysis. I generated all finalized figures related to ChIP-seq for this manuscript. Beyond that, I

played a major role in data interpretation along with Dr. Levandowski to produce the finalized

manuscript.
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4.2 Abstract

The ∆40p53 isoform heterotetramerizes with WTp53 to regulate development, aging, and

stress responses. How ∆40p53 alters WTp53 function remains enigmatic because their co-expression

causes tetramer heterogeneity. We circumvented this issue with a well-tested strategy that expressed

∆40p53:WTp53 as a single transcript, ensuring a 2:2 tetramer stoichiometry. Human MCF10A cell

lines expressing ∆40p53:WTp53, WTp53, or WTp53:WTp53 (as controls) from the native TP53

locus were examined with transcriptomics (PRO-seq, RNA-seq), metabolomics, and other methods.

∆40p53:WTp53 was transcriptionally active and although phenotypically similar to WTp53 under

normal conditions, it failed to induce growth arrest upon Nutlin-induced p53 activation. This

occurred via ∆40p53:WTp53-dependent inhibition of eRNA transcription and subsequent failure

to induce mRNA biogenesis, despite similar genomic occupancy to WTp53. A different stimulus

(5-fluorouracil) also showed ∆40p53:WTp53-specific changes in mRNA induction; however, other

transcription factors (e.g. E2F2) could then drive the response, yielding similar outcomes versus

WTp53. Our results establish that ∆40p53 tempers WTp53 function to enable compensatory

responses by other stimulus-specific transcription factors. Such modulation of WTp53 activity may

be an essential physiological function for ∆40p53. Moreover, ∆40p53:WTp53 functional distinctions

uncovered herein suggest an eRNA requirement for mRNA biogenesis and that human p53 evolved

as a tetramer to support eRNA transcription.

4.3 Introduction

Transcription factors (TFs) are the primary drivers of cell state and cell physiology[140]. As

a testament to their biological importance, an entire population of fibroblasts will form myotubes

upon expression of a single TF, MyoD[223]. As a TF, p53 coordinates cellular stress responses and

also plays key roles in cancer, aging, and stem cell biology[121, 129, 132]. Regulation of p53 function

across these diverse biological circumstances involves an array of mechanisms, with well-studied ex-

amples that include changes in post-translational modification[93] or protein stability[100, 132, 133].
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Less well understood are p53 isoforms[30], which represent naturally occurring truncated products

that result from alternative splicing from the native TP53 locus, or from altered translation of

its mRNA. Among the p53 isoforms that have been identified, the ∆40p53 isoform is arguably the

most biologically relevant, yet also remains one of the most enigmatic[7]. Isoform ∆40p53 has many

aliases such as p44, p53/p47, and ∆Np53; ∆40p53 lacks only the N-terminal 39 amino acids, which

encompass the first p53 activation domain (AD1). All other p53 domains, including the oligomer-

ization and DNA-binding domains, are retained. AD1 is a key p53 domain that drives most p53

transcriptional responses in vivo[118, 119] and is required for stable recruitment of co-activators

such as Mediator and CBP/p300. AD1 is also recognized by the MDM2 protein, an E3 ubiquitin

ligase that negatively regulates p53 function through proteasomal degradation[100, 133]. In addi-

tion to AD1, the p53 N-terminus contains a second activation domain, AD2. Loss of both AD1

and AD2 or mutation of key residues in each domain (L22, W23 in AD1; L53, W54 in AD2) results

in complete loss of p53 TF function and resembles a p53-null phenotype[36]. Notably, p53AD2 is

capable of activating a subset of p53 transcripts in the presence of L22, W23 AD1 mutations, to

support induction of senescence and tumor suppression[36, 117]. In the absence of WTp53, the

∆40p53 isoform is transcriptionally inactive in vitro, despite forming stable tetramers[151]. More-

over, ∆40p53 expression in a p53-null background does not alter the p53-null phenotype[161]. Thus,

∆40p53 requires WTp53 to impact p53 transcriptional responses and to cause phenotypic changes.

This was best exemplified in mouse studies in which truncated or naturally occurring ∆40p53 iso-

forms were expressed together with WTp53 in roughly a 1:1 ratio[161, 226]. These ”∆40p53 +

WTp53” mice adopted an accelerated aging phenotype, which, in addition to premature death, in-

volved physiological changes observed with normal aging, such as increased senescence, early-onset

osteoporosis, and memory loss[103, 161, 188]. Whereas the molecular and cellular mechanisms by

which ∆40p53 acts to alter WTp53 function remain unclear, it involves formation of hetero-dimers

with WTp53. The ∆40p53 isoform forms mixed ∆40p53:WTp53 tetramers when expressed to-

gether with WTp53[55, 65]. Generation of ∆40p53 can occur by alternate splicing; however, the

primary mechanism appears to be through alternate translation via an internal ribosomal entry
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site (IRES)[242, 253]. Cellular levels of ∆40p53 have been shown to increase in response to diverse

types of stress[31, 86, 177, 190], suggesting that ∆40p53 levels naturally fluctuate throughout the

lifespan of an organism. Whereas enforced co-expression of ∆40p53 with WTp53 causes acceler-

ated aging in mice[161], the direct correlation between cellular stress and ∆40p53 levels suggests

a mechanism whereby chronic stress may cause transcriptional changes that contribute to mam-

malian aging[75]. A major barrier to understanding how ∆40p53 affects WTp53 function is that

co-expression (i.e. ∆40p53 + WTp53) will confound analyses due to tetramer heterogeneity, in-

cluding formation of ”contaminating” WTp53 tetramers. Under such circumstances, the activity

of ∆40p53:WTp53 tetramers cannot be de-coupled from WTp53 function. The cryo-EM structure

of the WTp53 tetramer[186] revealed a straightforward means to link ∆40p53 and WTp53 as a

single transcript while preserving p53 tetramer structure (Fig. 4.1A). As a proof-of-principle, we

tested the function of tethered ∆40p53:WTp53 tetramers (versus standard WTp53 tetramers) in

a series of biochemical and cell-based experiments[151]. As expected, the flexible sequence linking

∆40p53 with WTp53—which was longer than necessary to enable conformational flexibility—did

not affect p53 activity. For example, tethered p53 tetramers purified exactly as WTp53 tetramers

(e.g. identical over a size-exclusion column) and tethered versions of WTp53 (i.e. WTp53:WTp53)

mimicked phenotypic and gene expression changes induced by WTp53 in H1299 cells[151]. In fact,

the global gene expression changes (mRNA) induced by WTp53 versus WTp53:WTp53 were es-

sentially identical[151]. These results affirmed the tethering strategy and served as a ”proof of

concept” for the more rigorous analysis described here, in which we used CRISPR-Cas9 to gen-

erate homozygous knock-in cell lines that expressed WTp53, ∆40p53:WTp53 or WTp53:WTp53

from the native TP53 locus. Using PRO-seq, we measured rapid transcriptional responses fol-

lowing p53 activation, whereas RNA-seq probed subsequent changes in steady-state mRNA levels,

and these transcriptional responses were linked to p53 occupancy using ChIP-seq. Combined with

metabolomics and phenotypic assays, we have better defined how ∆40p53 alters WTp53 function

in human cells. Notably, the ∆40p53 isoform tempers WTp53 activity, which allows other TFs to

drive stimulus-specific responses. We also uncovered unexpected aspects of ∆40p53 function that
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link eRNA transcription and mRNA biogenesis, and that suggest that four complete p53 activation

domains (i.e. AD1 + AD2) must occupy a p53 binding site to induce eRNA transcription.

4.4 Results

4.4.1 Generation of genome-edited cell lines

Three distinct genome-edited (CRISPR-Cas9) MCF10A cell lines were generated: a WTp53

control, in which WTp53 was simply inserted back into the native TP53 locus, a WTp53:WTp53

control, to probe for potential tether-specific effects, and ∆40p53:WTp53 (Fig. 4.1A). In each case,

the p53 cDNA sequence was inserted at the first translational start site in exon 2 of the TP53 gene,

to ensure expression would be controlled through the native p53 promoter (Fig. 4.5A,B). We chose

MCF10A cells because they endogenously express WTp53 and are derived from non-tumorigenic

mammary tissue. MCF10A cells therefore have a stable genome that is not prone to mutations or

polyploidy. Edited cells were sorted based on mCherry selection, and single cell clones were ex-

panded and verified homozygous using PCR (Fig. 4.5C), western blot (Fig. 4.5D), and sequencing

(Fig. 4.6). The endogenous regulation of p53 expression in genome-edited cells was tested by treat-

ing cells with the small molecule Nutlin-3a, which disrupts the p53 interaction with MDM2[229].

Consequently, Nutlin-3a activates p53 and increases its protein levels. As shown in Figure 4.1B,

Nutlin-3a increased p53 protein levels in all three genome-edited cell lines, confirming each was

regulated similar to WTp53 in non-edited MCF10A cells. Additional verification results are shown

in Figure 4.7. Together, these three MCF10A cell lines provided a means to evaluate ∆40p53 func-

tion under physiologically relevant conditions. Because ∆40p53:WTp53 was expressed as a single

transcript, a fixed 2:2 tetramer stoichiometry was assured, avoiding tetramer heterogeneity that

results from ∆40p53 + WTp53 co-expression.
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4.4.2 WTp53 and ∆40p53:WTp53 cells are phenotypically similar under normal

growth conditions

In non-stressed conditions, cellular p53 activity is typically very low. All three cell lines

(WTp53, WTp53:WTp53, and ∆40p53:WTp53) were derived from the same parental MCF10A

line and were therefore isogenic except at the TP53 locus. Under normal growth conditions, no

significant change in cell cycle was observed between WTp53, WTp53:WTp53, or ∆40p53:WTp53

cells (Fig. 4.8A). Furthermore, the growth rate of each cell line was similar (Fig. 4.1C); whereas

growth was slightly enhanced in ∆40p53:WTp53 cells, the increase was not statistically significant.

As a tumor suppressor, p53 significantly impacts cell metabolism[132]. Therefore, we compared the

metabolomes of WTp53, WTp53:WTp53, and ∆40p53:WTp53 cells. Consistent with the cell cycle

and cell growth assays, untargeted metabolomics experiments confirmed that each p53 knock-in cell

line had similar (but not identical) basal levels of metabolites (Supplemental Table 1). Metabolites

relevant to cell cycle progression are shown in Figure 4.8B.

4.4.3 Nutlin-3a exposes phenotypic changes in ∆40p53:WTp53 cells (versus WTp53)

We next examined how each cell line (WTp53, WTp53:WTp53, or ∆40p53:WTp53) would

respond to p53 activation by Nutlin-3a. Notably, Nutlin-3a is non-genotoxic and highly specific for

p53[9]; thus, unlike a typical physiological stimulus (e.g. DNA damage), auxiliary pathways are not

activated by Nutlin-3a. As shown in Figure 4.1D, p53 activation by Nutlin-3a triggered a marked

increase in G1 and a decrease in S and G2 phases in WTp53 cells. These results are characteristic

of G1 arrest and represent a typical p53 response[121]. Also as expected, WTp53:WTp53 cells were

similar to WTp53 cells (Fig. 4.9A). By contrast, cell cycle data for Nutlin-treated ∆40p53:WTp53

cells resembled control-treated (DMSO) cells, with only a modest Nutlin-dependent shift in G1

that did not reach statistical confidence of p ≤ 0.01 (Fig. 4.1D). A p53 target gene that drives cell

cycle arrest is CDKN1A (a.k.a. p21), and p21 can be induced by mixed ∆40p53:WTp53 tetramers,

as shown by us[151] and others[161]. We measured p21 protein levels in Nutlin-treated WTp53
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versus ∆40p53:WTp53 cells and observed increases in each line (Fig. 4.1E; WTp53:WTp53 in

Fig. 4.9B). Although p21 protein levels were greater in WTp53 cells, it was evident that Nutlin-3a

activated ∆40p53:WTp53 tetramers, consistent with increased ∆40p53:WTp53 protein levels upon

Nutlin-3a treatment (Fig. 4.1B). Parallel experiments in p53-null MCF10A cells confirmed that

the Nutlin-dependent increase in p21 protein was p53-dependent (Fig. 4.1E). Also as expected,

cell cycle changes were not observed in p53-null cells in response to Nutlin-3a treatment, nor was

there a change in p21 mRNA levels (Fig. 4.9C). Others have shown that cell stress transiently

increases ∆40p53 protein levels [31, 55, 86, 169, 177] and this has implications for aging, as chronic

induction of ∆40p53 over time may contribute to physiological aging. To simulate transient periods

of cell stress (i.e. p53 pathway activation), we subjected each cell line (WTp53, WTp53:WTp53,

or ∆40p53:WTp53) to repeated cycles of Nutlin-3a treatment (20 hr), followed by 48 hr recovery.

As shown in 4.9D Figure, WTp53:WTp53 cells responded similarly to WTp53, as expected. By

contrast, a stark difference was observed between WTp53 and ∆40p53:WTp53 cells. Growth was

arrested in WTp53 cells, but proliferation continued in ∆40p53:WTp53 cells, even after multiple

rounds of Nutlin treatment (Fig. 4.9D). This result contrasts with untreated (DMSO) WTp53 ver-

sus ∆40p53:WTp53 cells, which showed no significant difference in growth rate (Fig. 4.1C). Because

the metabolic needs for proliferating versus arrested cells will be distinct, we also compared the

metabolomes of WTp53 versus ∆40p53:WTp53 cells following Nutlin-3a treatment (Supplemen-

tal Table 2). As expected, Nutlin-treated WTp53 cells showed metabolic changes that reflected

their reduced proliferation (Supplemental Table 2; similar results in WTp53:WTp53 cells). By

contrast, metabolic differences evident in ∆40p53:WTp53 cells were consistent with their main-

tenance of proliferation and were observed even prior to Nutlin stimulation (Supplemental Table

1). For instance, decreased levels of sphingosine or increased levels of sphingomyelin metabolites

in ∆40p53:WTp53 cells (Fig. 4.10) is each independently consistent with maintenance of cell cycle

and proliferation[96]. Conversely, WTp53 and WTp53:WTp53 cells showed the opposite trends in

these metabolites (versus ∆40p53:WTp53), consistent with the induction of cell cycle arrest upon

Nutlin treatment. Although these results could reflect a complete lack of p53 pathway activation
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by Nutlin-3a in ∆40p53:WTp53 cells, this did not appear to be the case based upon data shown

in Figure 4.1B (Nutlin-dependent increase in ∆40p53:WTp53 levels) or Figure 4.1E (p21 protein

induction). To further probe the underlying mechanisms, we next assessed how Nutlin-dependent

p53 activation affected the transcriptomes of ∆40p53:WTp53 versus WTp53 cells.

4.4.4 ∆40p53:WTp53 differentially affects the pol II transcriptome upon Nutlin-3a

treatment

To compare and contrast transcriptional changes in ∆40p53:WTp53 cells (versus WTp53),

we used Precision nuclear Run-On sequencing (PRO-seq), which measures nascent transcription

genome-wide[135]. PRO-seq detects transcripts from all three RNA polymerases and measures

all types of pol II transcripts, including non-coding RNAs and non-annotated regions. Cells

(∆40p53:WTp53, WTp53, and WTp53:WTp53) were treated with Nutlin-3a for three hours, and

differential transcription was quantified using DEseq2[8]. The 3 hour time point was determined em-

pirically (Fig. 4.11), with reference to Nutlin-treated HCT116 cells that we evaluated previously[6].

This early time point following Nutlin stimulation favored identification of direct (i.e. primary)

p53 transcriptional targets. In WTp53 cells, 4607 annotated regions were differentially transcribed

(p-value ≤ 0.01) after Nutlin-3a treatment (Fig. 4.2A), with similar transcriptional changes in

WTp53:WTp53 cells (Fig. 4.12). By contrast, only 315 annotated regions were differentially tran-

scribed (p-value ≤ 0.01) in ∆40p53:WTp53 cells after Nutlin-3a treatment (Fig. 4.2A). Of these

315 Nutlin-induced transcripts in ∆40p53:WTp53 cells, 298 were also observed in WTp53 cells,

and only 17 annotated genes were differentially transcribed in ∆40p53:WTp53 versus WTp53 cells

(Fig. 4.13A), with most linked to cell growth. We confirmed that a significant p53 response was oc-

curring in ∆40p53:WTp53 cells by completing parallel PRO-seq experiments in p53-null MCF10A

cells (Fig. 4.13B-D). Thus, the magnitude of Nutlin-3a induction was simply greater in WTp53

cells versus ∆40p53:WTp53, with examples shown in Figure 4.13E. Gene Set Enrichment Analy-

sis (GSEA) of the Nutlin-induced genes revealed substantial differences, with pathways associated

with growth and cell cycle progression increased in ∆40p53:WTp53 cells (Fig. 4.2B). Enrichment of
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the E2F pathway in Nutlin-treated ∆40p53:WTp53 cells (versus WTp53) was notable because the

E2F TF family has overlapping function with p53[192]. The reduced p53 pathway activity (GSEA,

Fig. 4.2B) was consistent with dampened response in ∆40p53:WTp53 cells compared with WTp53.

An Integrated Pathway Analysis (IPA) of the Nutlin-induced genes showed results consistent with

GSEA, with growth and cell cycle pathways enhanced in ∆40p53:WTp53 cells (Fig. 4.13F). In par-

ticular, mTOR signaling and IGF-1 signaling were increased in ∆40p53:WTp53 cells compared to

WTp53; each of these pathways has been linked to ∆40p53 expression in human cells[151] or mouse

models[161], as potential contributors to the ∆40p53 accelerated aging phenotype. Although the

transcriptional changes summarized in Figure 4.13A may contribute to the increased proliferation

of ∆40p53:WTp53 cells (versus WTp53) after Nutlin-3a treatment (Fig. 4.9D), we emphasize that

the PRO-seq data were obtained after only 3 hr treatment; changes in steady-state mRNA levels

(i.e. RNA-seq) after a longer period of Nutlin-3a treatment are described later.

4.4.5 ∆40p53:WTp53 tetramers fail to induce eRNA transcription

In addition to gene expression changes in annotated regions, the PRO-seq data revealed stark

differences in transcription of eRNAs. Whereas WTp53 cells had 510 differentially transcribed (p-

value ≤ 0.01) eRNAs after 3 hr Nutlin-3a treatment, only 118 eRNAs changed in ∆40p53:WTp53

cells. Among the 510 WTp53 eRNAs (Fig. 4.2C), 109 mapped to p53 binding sites identified by

ChIP-seq (see below; similar results in WTp53:WTp53 cells, Fig. 4.14). These 109 p53-associated

eRNAs are indicative of direct eRNA activation by p53[6, 170]. By contrast, only 6 eRNAs mapped

to p53 binding sites in ∆40p53:WTp53 cells, revealing a defect in its ability to induce eRNA tran-

scription. The examples shown in Figure 4.2D and Figure 4.15 further highlight the contrast in

eRNA induction between WTp53 and ∆40p53:WTp53 tetramers. We note that Nutlin-induced

eRNAs that mapped to sites not bound by p53 likely represent weak p53 binding (i.e. below

cutoff) or secondary effects from p53 activation. Whereas the biological roles for eRNA transcrip-

tion remain unclear, they display cell-type specific expression patterns[13] and rapidly respond to

external stimuli. Most relevant to this study, eRNAs are transcribed in response to p53 binding
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events[6] and correlate with expression of p53 target genes[170]. To further probe eRNA tran-

scriptional changes, we applied Transcription Factor Enrichment Analysis (TFEA), an improved

computational method[207] that can detect changes in bidirectional eRNA transcription. TFEA

then maps these eRNAs to the genome and identifies any underlying TF binding motifs. In this

way, TFEA can accurately identify which TFs are being activated or repressed during a stimu-

lus. As shown in Figure 4.16A, TFEA revealed a robust p53 activation in Nutlin-treated WTp53

cells (and WTp53:WTp53 cells, Fig. 4.16B), as expected. In ∆40p53:WTp53 cells, however, no

evidence of p53 activation was apparent (Fig. 4.16C); moreover, a TFEA comparison of WTp53

versus ∆40p53:WTp53 cells indicated a defect in p53 activation by ∆40p53:WTp53 tetramers (Fig.

4.16D). Metagene analyses further illustrated the contrast between eRNA transcription in Nutlin-

treated WTp53 versus ∆40p53:WTp53 cells (Fig. 4.2E; WTp53:WTp53 data in Fig. 4.16E). In

agreement with the TFEA results, ChIP-seq analyses confirmed that ∆40p53:WTp53 binding fails

to induce eRNA transcription, in direct contrast to WTp53 (see below). Collectively, these results

establish that ∆40p53:WTp53 tetramers fail to induce eRNA transcription upon p53 activation.

4.4.6 Genomic occupancy of ∆40p53:WTp53 is identical to WTp53

Because eRNA induction is dependent upon TF binding[6, 17, 81], it was possible that eRNAs

were not impacted in ∆40p53:WTp53 cells because ∆40p53:WTp53 did not bind p53 sequences,

even after Nutlin treatment. However, ∆40p53 contains the entire DNA-binding domain (residues

101-300); therefore, we expected that the genomic occupancy of ∆40p53:WTp53 tetramers would

resemble that of WTp53. As shown in Figure 4.2F and Figure 4.17A,B, ChIP-seq data revealed

that ∆40p53:WTp53 bound the same sites as WTp53, genome-wide, as expected given their iden-

tical DNA-binding domains. The corresponding eRNAs are shown in Fig. 4.2D. Consistent with

TFEA results (Fig. 4.16C) these data show that ∆40p53:WTp53 binding fails to induce eRNA

transcription, in contrast to WTp53. Metagene analyses showed that occupancy of both WTp53

and ∆40p53:WTp53 increased after Nutlin-3a treatment, as expected (Fig. 4.2G; WTp53:WTp53

shown in Fig. 4.17C). No ∆40p53:WTp53-specific binding sites were detected. Note that the
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antibody used for ChIP-seq recognizes the p53 N-terminus, which is absent in ∆40p53; thus,

∆40p53:WTp53 possesses 50% fewer epitopes per tetramer, and this will reduce its overall sig-

nal. Nevertheless, occupancies of WTp53:WTp53 and ∆40p53:WTp53 appeared nearly identical

under basal or Nutlin-treated conditions (Fig. 4.17B). Because ChIP-seq is qualitative, we cannot

draw conclusions about the relative levels of p53 binding across the cell lines. Moreover, proteins

with increased molecular weight (e.g. WTp53:WTp53) are more susceptible to degradation dur-

ing sonication[187], which may have decreased ChIP efficiency in tethered p53 cell lines. Despite

these caveats, it was evident that 1) ∆40p53:WTp53 was appropriately mobilized in response to

Nutlin-3a treatment, similar to WTp53, that 2) ∆40p53:WTp53 occupied the same p53 binding

sites (versus WTp53), genome-wide, under basal and Nutlin-induced conditions, and that 3) unlike

WTp53, ∆40p53:WTp53 binding fails to induce eRNA transcription.

4.4.7 RNA-seq data suggest defective mRNA biogenesis for transcripts induced

by ∆40p53:WTp53

We next completed biological replicate RNA-seq experiments, to compare cellular mRNA

levels with the nascent RNA changes identified by PRO-seq. We treated each cell line (WTp53,

∆40p53:WTp53, and WTp53:WTp53) with Nutlin-3a for 20 hr. This time point was chosen to

allow time for Nutlin-induced changes to manifest in the steady-state mRNA transcriptome. As

shown in Figure 4.3A, 1132 genes were differentially expressed (p-value ≤ 0.01) in WTp53 cells,

with similar results in WTp53:WTp53 cells (Fig. 4.18A). In stark contrast, ∆40p53:WTp53 cells

showed essentially no Nutlin response at the mRNA level; CDKN1A/p21 was the only gene that

was induced (Fig. 4.3A). The lack of p53 activation in ∆40p53:WTp53 cells is further highlighted

by the heat map of p53 pathway genes, shown in Figure 4.18B. As with the PRO-seq data (Fig.

4.2B), GSEA identified the same pathways upon comparison of RNA-seq data from Nutlin-treated

∆40p53:WTp53 versus WTp53 cells (Fig. 4.3B). For instance, the inhibited (p53 pathway) and

activated (G2M checkpoint, E2F targets) pathways were consistent, again supporting the enhanced

proliferation of ∆40p53:WTp53 cells during Nutlin treatment (Fig. 4.9D). As shown in Figure
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4.3C, approximately 10% of genes (439/4338) were identified as differentially expressed (p-value

≤ 0.01) in both the PRO-seq (nascent transcription, 3 hr) and RNA-seq (steady-state mRNA, 20

hr) experiments in Nutlin-treated WTp53 cells (WTp53:WTp53 data shown in S14C Fig). This

percentage is roughly consistent with previous studies that compared GRO-seq and RNA-seq data

in Nutlin-treated cells[9], and provides a benchmark for the efficiency of mRNA biogenesis during a

Nutlin-induced p53 response. Although the number of differentially expressed nascent transcripts (n

= 315) was reduced in Nutlin-treated ∆40p53:WTp53 cells at 3 hr (Fig. 4.3C), over 30 genes would

be expected to be induced at the mRNA level, but this was not observed. These results suggest that

mRNA biogenesis is defective for transcripts induced by ∆40p53:WTp53. Moreover, the mRNA

data show striking parallels with bidirectional eRNA transcription. Like the mRNA transcriptome,

changes in p53-dependent eRNA transcription were largely absent in ∆40p53:WTp53 cells.

4.4.8 The p53 paralogs p63 or p73 do not impact ∆40p53:WTp53 response

Analysis of PRO-seq and RNA-seq data revealed that whereas p63 was expressed in MCF10A

cells, p73 was not (Fig. 4.19). Stable knockdown of p63 (Fig. 4.20A) in each cell line (WTp53,

WTp53:WTp53, or ∆40p53:WTp53) did not impact proliferation or the cell cycle compared with

controls (Fig. 4.20B,C); moreover, p63 was not induced by Nutlin-3a in any cell line (Fig. 4.19).

Finally, RT-qPCR experiments showed that loss of p63 did not significantly impact CDKN1A/p21

or PUMA gene induction in Nutlin-treated WTp53, WTp53:WTp53, or ∆40p53:WTp53 cells (Fig.

4.20D). Collectively, these results suggest that p63 and p73 do not contribute to the differential

phenotypic or transcriptional responses in ∆40p53:WTp53 cells.

4.4.9 WTp53 and ∆40p53:WTp53 support similar cellular responses to 5-fluorouracil,

via distinct TFs

Finally, we asked whether a different p53 stimulus would cause the same transcriptional de-

fects in ∆40p53:WTp53 cells; that is, a lack of response at the mRNA level. Because Nutlin-3a is

highly selective for p53 (i.e. other TFs are not affected), it provided an efficient means to interrogate
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p53-specific transcriptional effects. However, Nutlin-3a is not physiologically relevant, and typical

stress responses activate multiple pathways and their respective signal-specific TFs. We therefore

selected 5-fluorouracil (5FU), a well-studied, clinically relevant chemotherapeutic that not only

activates the p53 pathway but also other signaling cascades associated with DNA damage[248].

WTp53, WTp53:WTp53, and ∆40p53:WTp53 cells were treated with 375 µM 5FU for 20 hr. Cell

cycle analysis showed that 5FU caused similar changes in WTp53 versus ∆40p53:WTp53 cells

(Fig. 4.4A), with a significant increase in S-phase and a significant decrease in G2 phase. As ex-

pected, WTp53 and WTp53:WTp53 cells also showed similar results upon treatment with 5FU (Fig.

4.21A). These results were not entirely surprising, since each cell line (WTp53, WTp53:WTp53,

and ∆40p53:WTp53) was isogenic apart from the TP53 locus; thus, all auxiliary pathways were

expected to respond similarly. To further compare and contrast the cellular responses to 5FU,

we conducted biological replicate RNA-seq experiments. As shown in Figure 4.4B, 5FU caused

differential expression of 926 genes in WTp53 cells and 823 genes in ∆40p53:WTp53 cells (p-value

≤ 0.01; WTp53:WTp53 data shown in Fig. 4.21B). Of these, 415 were shared among WTp53 and

∆40p53:WTp53 and many of these genes were p53 targets (Fig. 4.4B), as revealed by IPA. About

half (408 out of 823) of the differentially expressed genes in ∆40p53:WTp53 cells were regulated

by other TFs such as E2F1 (Fig. 4.4B). This result indicated that, in contrast to the targeted,

p53-specific Nutlin response, the complex stress response induced by 5FU enabled other signal-

specific TFs to augment the attenuated p53 response in ∆40p53:WTp53 cells. As shown in Figure

4.4C, mRNA levels of the TF E2F2 were selectively up-regulated in ∆40p53:WTp53 cells, suggest-

ing that E2F2 helps compensate for the reduced p53 response in cells expressing ∆40p53:WTp53.

In WTp53 cells, E2F2 mRNA levels decreased by 57% (versus DMSO, with a 10% decrease in

WTp53:WTp53 cells) upon 5FU treatment. By contrast, E2F2 mRNA levels increased by 398% in

∆40p53:WTp53 cells (fold-change of 14.4), and E2F2 pathway genes were selectively up-regulated

in ∆40p53:WTp53 cells (Fig. 4.4D, E;WTp53:WTp53 Fig. 4.22A). Interestingly, the E2F family

of TFs have overlapping functions with p53, but p53 activation typically downregulates E2F gene

expression[192]. E2F2 induction in 5FU-treated ∆40p53:WTp53 cells suggested that, instead of
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p53, E2F and other TFs drive the transcriptional response toward cellular outcomes similar to

WTp53. This concept was further supported by pathway analyses, which revealed that despite

a different set of active and repressed TFs in ∆40p53:WTp53 cells versus WTp53 (Fig. 4.22B),

the upstream regulators identified by IPA were similar (Fig. 4.22C). Consistent with these re-

sults, 5FU treatment caused similar cell cycle changes in WTp53 versus ∆40p53:WTp53 cells (Fig.

4.4A). To further probe p53-dependent effects on the 5FU response, and whether E2F and other

TFs compensate for reduced p53 activity in ∆40p53:WTp53 cells, we completed cell cycle analyses

in p53-null MCF10A cells following 20hr treatment with 375 µM 5FU (conditions identical to prior

experiments). The results showed that cellular responses were similar to WTp53 (Fig. 4.22D),

suggesting that, despite strong p53 activation by 5FU in WT cells, p53 is not required for cell cycle

changes in this context. We next analyzed published RNA-seq data that compared 5FU-treated

WTp53 and p53-null HCT116 cells[251]. Notably, GSEA identified similar pathways and TFs (e.g.

E2F) activated by 5FU in p53-null cells (Fig. 4.22E), compared with ∆40p53:WTp53 cells (Fig.

4.4D), providing further support for a network of TFs that can compensate for p53 if its activity is

reduced (e.g. in ∆40p53:WTp53 cells) or even lost (as in p53-null cells). Taken together, the results

from 5FU-treated cells revealed that other signal-specific TFs can drive transcriptional programs

under conditions with tempered p53 activity, such as in ∆40p53:WTp53 cells (Fig. 4.4F).

4.5 Discussion

The ∆40p53 isoform is naturally occurring, and its levels appear to increase during cell

stress[31, 55, 86, 177, 190] or during specific developmental stages[227]. Because spontaneous

TP53 mutations can yield a proliferative advantage in cultured cells[171], we chose the MCF10A

cell line for this study because it is genetically stable (Fig. 4.6), unlike many cancer-derived

cell lines. MCF10A cells also endogenously express WTp53, and we confirmed that WTp53 or

WTp53:WTp53 cells were phenotypically similar to unedited MCF10A cells under normal or p53-

stimulated conditions (Fig. 4.7). We also tested additional genome-edited cell clones to rule out

potential effects from clonal expansion (Fig. 4.23). Whereas more cell lines could be tested with
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identical sets of experiments, others have shown that basic p53 transcriptional responses are similar

across cell types[9, 76], and p53 transcriptional response was the primary focus of this work. Based

upon the transcriptomics data, several themes have emerged about how ∆40p53 alters WTp53

function (Fig. 4.4F). Expression of ∆40p53 1) modulates the transcriptional activity of WTp53,

such that mixed ∆40p53:WTp53 tetramers suppress typical p53 transcriptional responses. Despite

this, 2) ∆40p53:WTp53 tetramers retain the ability to activate p53 target genes, as seen most clearly

in 5FU-treated cells (Fig. 4.4B) or upon comparison with p53-null cells (Fig. 4.13B-D). That is,

∆40p53:WTp53 tetramers do not functionally mimic p53-null conditions. This ability of ∆40p53 to

dampen the p53 response 3) allows other sequence-specific, DNA-binding TFs to tune cellular stress

responses, because they are not dominated by p53. For example, the gene expression signatures

for the signal-specific TF E2F2 substantially contributed to the 5FU response in ∆40p53:WTp53

cells (Fig. 4.20, Fig. 4.4C-E). In this way, ∆40p53 allows augmentation of the p53 response by

other stress- or signal-responsive TFs. This functional versatility may be especially important in

specific contexts, cell types, or developmental stages that require a modified p53 response[33, 228];

for instance, to allow cell cooperation[61] and proliferation during embryonic development[227] or

wound healing[234]. Furthermore, 4) the continual, enforced expression of ∆40p53 in the context

of WTp53 (i.e. ∆40p53 + WTp53) causes accelerated aging in mice[161]. Whereas the biology

of aging is complex[154], we observed that numerous pathways implicated in organismal aging

were impacted in predictable ways by ∆40p53:WTp53. For example, the mTOR and IGF signaling

pathways were up-regulated in ∆40p53:WTp53 cells (versus WTp53; Fig. 4.13F), and each pathway

is broadly implicated in aging[27, 213]. Concomitant activation of p53 and the mTOR pathway was

also noted upon transfection of ∆40p53:WTp53 in p53-null H1299 cells[151]; notably, simultaneous

activation of p53 and mTOR can trigger senescence[62, 128]. Senescent cells accumulate during

physiological aging[20] and, consistent with the aging phenotype, mice that co-express N-terminal

p53 truncations with WTp53 exhibit early senescence-associated phenotypes[226].
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4.5.1 ∆40p53 tempers WTp53 function, enabling other TFs to drive cellular

processes

Related to item 3) and 4), above, the contrast between Nutlin-3a and 5FU is especially

informative. Because Nutlin-3a is exquisitely specific for p53[9, 229], it was a valuable tool to

selectively interrogate the p53 response. However, Nutlin stimulation is not physiologically relevant

and does not activate other signal-specific TFs (i.e. only p53). In contrast, 5FU induces a DNA

damage response that activates multiple signaling cascades. A clear distinction in mRNA biogenesis

was observed in cells treated with 5FU. Hundreds of mRNAs were induced in ∆40p53:WTp53 cells

after 20 hr treatment with 5FU, including many canonical p53 target genes (Fig. 4.4B). These

results suggest that functional coordination among other signal-specific TFs helps drive mRNA

biogenesis in ∆40p53:WTp53 cells. Whereas 5FU-treated ∆40p53:WTp53 cells showed diminished

p53 activation (versus WTp53 cells), E2F2 expression levels (and its downstream target genes;

Fig. 4.4D, E) increased significantly, revealing that other signal-responsive TFs augment cellular

responses in the presence of ∆40p53:WTp53. Thus, the dampened p53 response in ∆40p53:WTp53

cells allows other TFs to drive the cellular response. These results are consistent with the concept

of collaborative TF networks that enable compensatory responses if the function of typical ”driver”

TFs is compromised[152]. Such compensatory mechanisms appear to hard-wire cellular stress

responses to ensure robust and consistent outcomes; this may be especially important in vivo, to

coordinate transcriptional responses across organs and tissues. Notably, increased levels of ∆40p53

occur during ER stress[31, 177], serum stimulation after starvation[55], and oxidative stress[86].

Multiple TFs and signaling cascades are activated under these circumstances, and the presence of

∆40p53:WTp53 tetramers may be important to allow integration of other pathway- and signal-

specific TFs to modulate the cellular response in cell-type or context-specific ways.
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4.5.2 eRNA transcription and mRNA biogenesis

Many studies have linked eRNA transcription with mRNA expression[14], including in re-

sponse to p53 activation[143, 170]. A general theme has been that increased eRNA transcription

correlates with increased expression of protein-coding genes; moreover, the timing of eRNA induc-

tion implies a regulatory role, as eRNAs are rapidly induced after a stimulus, followed by increased

mRNA levels of protein-coding genes. Here, we inadvertently established a system that, for the first

time, allowed analysis of the transcriptional response to p53 activation in the presence or absence

of p53-dependent eRNA induction, in largely isogenic cell lines. Our results implicate eRNA tran-

scription as a pre-requisite for mRNA biogenesis. In support of this conclusion, eRNA transcription

at p53 binding sites was blocked in ∆40p53:WTp53 cells (e.g. Fig. 4.16C)—despite similar genomic

occupancy versus WTp53—and this tracked with mRNA levels. For instance, PRO-seq data showed

that several hundred transcripts increased after 3 hour Nutlin treatment in ∆40p53:WTp53 cells

(Fig. 4.2A), but only one gene (0.3%), CDKN1A/p21, increased at the mRNA level (Fig. 4.3A). By

contrast, PRO-seq data from Nutlin-induced WTp53 cells showed an increase in 4607 transcripts,

with 1132 increased at the mRNA level (25%; Fig. 4.3C). These results establish a direct connection

between eRNA transcription and mRNA biogenesis (Fig. 4.4F). Indeed, the experiments described

herein were i) completed in virtually isogenic cell lines, with ii) virtually the same TF (only lack-

ing two of four AD1 domains for ∆40p53:WTp53), with iii) the same genomic occupancy and iv)

under the same stimulus. The mechanistic basis remains to be determined, but eRNA-dependent

regulation of RNA processing (e.g. splicing, cleavage, polyadenylation), or nuclear export could

contribute.

4.5.3 Four complete p53 activation domains are required for eRNA transcription

Because ∆40p53:WTp53 was expressed from the native TP53 locus, the timing and the levels

of induction matched WTp53; moreover, ChIP-seq data indicated that occupancy of ∆40p53:WTp53

versus WTp53 on genomic DNA was similar in basal and Nutlin-induced conditions. The lack of
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p53-dependent eRNA induction by ∆40p53:WTp53 is therefore attributed to loss of only two of

the four p53AD1 regions in the tetramer. That is, two activation domains are not sufficient for

normal p53 tetramer function in cells. These findings suggest that p53 may have evolved to func-

tion as a tetramer (i.e. delivering four ADs to genomic DNA), at least in part, to induce eRNA

transcription. Although additional experiments are needed to better define the molecular mecha-

nisms that underlie this unexpected result, it is notable that p53 binding sites are more isolated

in the human genome[230], whereas other TFs function within enhancers with clustered binding

sites for many factors[105]. Potentially, four complete p53 activation domains (i.e. AD1 + AD2)

are needed to stably recruit cofactors, such as Mediator, chromatin remodelers, and CBP/p300,

to induce eRNA transcription. Alternately, four complete p53 activation domains might promote

formation of molecular condensates that could help drive eRNA transcription by RNA polymerase

II[84]. In support of this hypothesis, the activation domains of p53 are intrinsically disordered and

p53 has been shown to form phase separated condensates in vitro[120] . These mechanisms (cofac-

tor recruitment or condensate formation) are not mutually exclusive and may act synergistically in

cells.

4.5.4 Implications for p53 tetramer structure

To date, no structural data exist for the entire p53 tetramer at atomic resolution, and it is evi-

dent that the p53 tetramer is structurally dynamic[110, 130]. This presents challenges for structural

analysis, even with cryo-EM. The flexibly tethered p53 tetramers described herein (WTp53:WTp53

or ∆40p53:WTp53) were designed based upon the cryo-EM structure of the native p53 tetramer

at intermediate resolution[186]. As far as we are aware, this structure by Orlova et al. is the only

instance in which wild-type, full-length p53 was used, and it remains the highest resolution p53

tetramer structure to date (13.7 Å). Whereas alternate structural models of the p53 tetramer have

been proposed[168, 224], these have used mutant versions of p53 (truncations or with four muta-

tions in each core DNA-binding domain; thus, 16 mutations per tetramer) that showed evidence for

structural instability and heterogeneity, and yielded lower resolution information. Previous proof-
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of-concept biochemical and transcriptomics experiments demonstrated that the flexible tethers

linking p53 monomers did not disrupt normal p53 tetramer function. For instance, WTp53:WTp53

tetramers matched gene expression changes induced by WTp53 in H1299 cells[151]. Similar results

were obtained in genome-edited MCF10A cells here (Fig. 4.12), and ChIP-seq data showed sim-

ilar genomic occupancy for WTp53 versus WTp53:WTp53 (Fig. 4.17). Likewise, MCF10A cells

expressing WTp53 or WTp53:WTp53 were phenotypically indistinguishable under normal growth

conditions or in response to Nutlin-3a or the genotoxic agent 5FU. These results best support the

structural model of Orlova et al.[12, 186]. Nevertheless, we emphasize that our flexible tether strat-

egy would enable formation of the ”alternate” p53 tetramer structures as well[168, 224]. Because

high-resolution data are lacking for WTp53 tetramers, its structural organization has remained

controversial, and it remains plausible that full-length p53 may adopt multiple structural states

that are functionally relevant.

4.5.5 CDKN1A/p21 induction and ∆40p53:WTp53 biological functions

Despite the inability of ∆40p53:WTp53 tetramers to induce eRNA transcription or mRNA

production in Nutlin-treated cells, an exception was CDKN1A (a.k.a. p21), which is a well-

established p53 target gene. CDKN1A inhibits the cyclin-dependent kinases (CDKs) CDK2 and

CDK4/6, which phosphorylate RB-related proteins to promote G1/S cell cycle arrest. Whereas

Nutlin-dependent activation of p53 triggered cell cycle arrest in WTp53 cells, this was not observed

with ∆40p53:WTp53 (Fig. 4.1D). This phenotypic difference (p53 activation without cell cycle

arrest) suggests ∆40p53 expression may be oncogenic; however, this was not observed in mouse

models[161]. Notably, p21 is still induced in Nutlin-treated ∆40p53:WTp53 cells (although less

compared with WTp53), at the protein and mRNA level (Fig. 4.1E, Fig. 4.3A). This low-level p21

expression is likely an important aspect of ∆40p53:WTp53 function in biology. Loss of p21 results

in polyploidy, due to defects in DNA damage response and cycling in the absence of mitosis[237].

Low-level p21 expression by ∆40p53:WTp53 may help maintain genomic stability by retaining the

mitotic checkpoint to prevent polyploidy. As a naturally occurring isoform, this basic function may
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be essential while ∆40p53 regulates stress responses throughout the mammalian lifespan.
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Figure 4.1: Analysis of ∆40p53:WTp53 tetramers as a single entity; phenotypic
comparisons under normal growth and Nutlin-induced conditions (A) Schematic of
WTp53 tetramer [186] and strategy to generate ∆40p53:WTp53 tetramers with a fixed 2:2
stoichiometry. Note the flexible tether is longer than necessary to allow conformational flexibility
[151]. (B) Western blot to probe p53 levels before (-) or 6 hr after Nutlin-3a treatment.
Non-edited MCF10A cells express WTp53 and are shown as a control. 20 µg total protein was
loaded in each lane. (C) Growth rate measured over 5 treatment cycles; each cycle encompassed
20 hours growth under basal (0.1% DMSO) conditions, splitting cells 1:10, then growth for
another 48 hours (3 biological replicates; bars = s.e.m.). (D) Cell cycle analysis (propidium
iodide); chart (inset) represents the average of 6 biological replicates (bars = s.e.m.). Arrow
highlights loss of S-phase in WTp53 cells, in contrast with ∆40p53:WTp53 cells. (E)
Measurement of p21 protein levels by FACS.
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Figure 4.2: ∆40p53 alters WTp53 function; ∆40p53:WTp53 fails to induce eRNA
transcription despite similar genomic occupancy versus WTp53. (A) Summary of
PRO-seq data for WTp53 (y-axis) versus ∆40p53:WTp53 (x-axis). Dashed line represents p-value
0.01. Venn diagram shows overlap between WTp53 and ∆40p53:WTp53 cells. (B) Gene Set
Enrichment Analysis (GSEA) based upon PRO-seq data (3 hr Nutlin-3a) comparing
∆40p53:WTp53 versus WTp53. Pathways with false discovery rate (q-val <0.1) are colored dots.
Red represents increased in ∆40p53:WTp53 compared to WTp53 and green is decreased. X-axis
is normalized enrichment score (NES). Top significant pathways are in the ranked list. (C)
Summary of PRO-seq data of eRNA transcription for WTp53 (y-axis) versus ∆40p53:WTp53
(x-axis). Dashed line represents p-value 0.01. Venn diagram shows overlap between WTp53 and
∆40p53:WTp53 cells. (D) Examples of PRO-seq data, showing Nutlin-induced eRNA
transcription in WTp53 cells, but not ∆40p53:WTp53. Location of p53 binding motif (p-val <
1x10-5) indicated with dashed line. (E) Metagene analysis showing average eRNA peak height,
genome-wide, at p53-responsive eRNAs (p-val < 0.25) in WTp53 or ∆40p53:WTp53 cells. (F)
Examples of ChIP-seq data in Nutlin-treated (6 hr) WTp53 or ∆40p53:WTp53 cells, compared
with DMSO controls; aligns with PRO-seq locations from panel D. (G) Metagene analyses
showing average ChIP-seq signal, genome-wide, at p53 binding sites in control versus
Nutlin-treated WTp53 or ∆40p53:WTp53 cells.
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Figure 4.3: p53 activation fails to increase mRNA levels in ∆40p53:WTp53 cells. (A)
Volcano plots showing differentially expressed mRNAs after 20 hr Nutlin treatment (versus DMSO
controls) in WTp53 or ∆40p53:WTp53 cells. Green dots represent down-regulated and red dots
up-regulated transcripts (p-val < 0.01). (B) Gene Set Enrichment Analysis (GSEA) based upon
RNA-seq data (20hr Nutlin-3a) comparing ∆40p53:WTp53 versus WTp53. Pathways with false
discovery rate q-val <0.1 are colored dots. Red represents increased in ∆40p53:WTp53 compared
to WTp53 and green is decreased. X-axis is normalized enrichment score (NES). Top significant
pathways are shown in ranked list. (C) Venn diagrams showing overlap among significantly
induced transcripts from PRO-seq data (3hr Nutlin) and RNA-seq data (20hr Nutlin). Whereas
about 10% of nascent transcripts show corresponding increases at the mRNA level in WTp53
cells, only CDKN1A/p21 shows this behavior in ∆40p53:WTp53 cells (1/316; 0.3%).
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Continued on next page.
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Figure 4.4: Cellular response to 5FU similar in WTp53 versus ∆40p53:WTp53 cells,
but driven by distinct TFs. (A) Cell cycle analysis (propidium iodide); chart (inset)
represents the average of 3 experiments (bars = s.e.m.). Arrows highlights increased S-phase in
both WTp53 and ∆40p53:WTp53 cells after 5FU treatment. (B) Volcano plots showing
differentially expressed mRNAs after 20hr 5FU treatment (versus DMSO controls) in WTp53 or
∆40p53:WTp53 cells. Green dots represent down-regulated and red dots up-regulated transcripts
(p-val < 0.01). Venn diagram shows the overlap among Ingenuity Pathway Analysis (IPA)
upstream regulators in 5FU-treated WTp53 versus ∆40p53:WTp53 cells. For each subset of genes
(WTp53-specific, shared, or ∆40p53:WTp53-specific), the top IPA transcription regulators
associated with those genes are listed (minimum Z-score cutoff 2.0). (C) Volcano plot showing
relative mRNA differences in 5FU-treated ∆40p53:WTp53 versus WTp53 cells. (D) Moustache
plot showing Gene Set Enrichment Analysis (GSEA) based upon RNA-seq data (20hr 5FU
treatment), comparing ∆40p53:WTp53 versus WTp53. Consistent with Fig. 4.2B and 4.3B.
Pathways with false discovery rate q-val < 0.1 are colored dots. Red represents increased in
∆40p53:WTp53 compared to WTp53 and green is decreased. X-axis is normalized enrichment
score (NES). Top significant pathways are shown in ranked list. (E) RNA-seq data (GSEA) shows
that differential E2F2 TF activity characterizes the ∆40p53:WTp53 transcriptional response to
5FU. (F) Model. WTp53 induces eRNA transcription and drives cellular stress responses,
whereas ∆40p53:WTp53 tetramers enable a tunable p53 response that allows other signal specific
TFs to govern transcriptional outcomes. Despite Nutlin-dependent activation of p53 target gene
nascent transcription (PRO-seq, 3hr) in ∆40p53:WTp53 cells, subsequent increases in mRNA
levels (RNA-seq, 20hr) were not observed; moreover, p53-dependent induction of eRNAs was
absent in ∆40p53:WTp53 cells. This disconnect between nascent transcription of p53 target genes
and mRNA induction implicates eRNA transcription as a regulator of mRNA biogenesis.
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Figure 4.5: Additional information about genome-edited cell lines. (A) Overview of donor
repair plasmids co-transfected with Cas9 RNPs. (B) Scheme for CRISPR-Cas9 insertions at the
native TP53 locus: WTp53 (2820bp), WTp53:WTp53 (4041bp), and ∆40p53:WTp53 (3924bp).
TA1: transactivation domain 1; TA2: transactivation domain 2; CTR: C-terminal region; IRES:
internal ribosomal entry site; PolyA: SV40 polyA sequence with terminator to prevent
downstream transcription. (C) PCR validation. Blue primer sets span the insertion and red
primer sets have forward primer within the insertion and the reverse primer outside the insertion.
Lack of 500bp band with blue primers indicated homozygous insertion. PCR experiments were
completed on genomic DNA isolated from each of the indicated cell lines. Non-edited MCF10A
cells were tested as an additional control. (D) Western blot validation of each genome-edited cell
line, using a p53 antibody (DO-1). As designed, each tethered construct (∆40p53:WTp53 or
WTp53:WTp53) migrated at around 100kDa, indicative of dimer expression as a single transcript.
The flexible tether for ∆40p53:WTp53 or WTp53:WTp53 contained a TEV cleavage site, and
treatment with TEV protease (+, as shown) cleaved the dimers to p53 monomers, as expected.
Note that the ∆40p53 monomer lacks the epitope detected by the p53 DO-1 antibody.
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Figure 4.6: Additional validation of CRISPR-Cas9 knock-in cell lines. (A) Sequencing
results from the p53 DNA-binding domain show no mutations at common hotspots in any of the
cell lines. Because p53 mutations can yield proliferative advantages in culture [171], DNA-binding
domain sequencing was performed several times throughout the project to ensure no mutations
occurred during the course of our experiments. (B) Internal validation of the edited p53 cell lines,
using PRO-seq data. The PRO-seq data was mapped to the inserted p53 sequences at the native
TP53 locus. RNA sequence corresponding to the first 39 amino acids of p53 was reduced by half
in the ∆40p53:WTp53 cell line versus WTp53, as expected. This method also allowed verification
of p53 copy number at 2 per cell line.
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Figure 4.7: Endogenous MCF10A cells phenotypically match CRISPR-Cas9 edited
WTp53 and WTp53:WTp53 cell lines. Unedited “off-the-shelf” MCF10A cells, edited
WTp53, and WTp53:WTp53 cells each display the same cell cycle phenotypes. (A) Cell cycle
analysis (propidium iodide) and bar plots (B) represent the average of 6 biological replicates (bars
= standard error of mean). Note that MCF10A cells endogenously express WTp53.
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Figure 4.8: WTp53 versus ∆40p53:WTp53 phenotypic and metabolic similarity under
normal growth conditions but differences upon p53 activation with Nutlin-3a. (A)
Cell cycle analysis (propidium iodide) of each genome-edited cell line. Chart (inset) represents the
average of 6 experiments (bars = standard error of mean). (B) Sample of metabolomics data
comparing IPA identified cell cycle metabolites under normal growth conditions in each cell line
(6 biological replicates each). Log2(Fold Change) was normalized to WTp53.
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Figure 4.9: WTp53:WTp53 cells are metabolically and phenotypically similar to
WTp53 cells. (A) Cell cycle analysis (propidium iodide)in WTp53:WTp53 cells; chart (inset)
represents the average of 6 biological replicate experiments (bars = standard error of mean).
Arrow highlights the loss of S-phase cells, similar to WTp53 cells (and in contrast with
∆40p53:WTp53 cells). (B) Measurement of p21 protein levels by FACS; similar to WTp53, p21
protein levels increase in WTp53:WTp53 cells after Nutlin-3a treatment. (C) Cell cycle analysis
(propidium iodide) in p53-null MCF10a cells; chart (inset) represents the average of 3 biological
replicate experiments (bars = standard error of mean). Bar plot shows time correlated p21
RT-qPCR (not statistically significant pval > 0.05). (D) Growth rate measured over 5 treatment
cycles; each cycle encompassed Nutlin treatment for 20 hours, followed by splitting cells 1:10,
then growth under normal conditions for 48 hours (3 biological replicates; bars = s.e.m.). Note
the similar growth characteristics of WTp53 versus WTp53:WTp53 cells.
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Figure 4.10: Metabolomics show increased sphingolipid metabolites in ∆40p53:WTp53
cells. Metabolic changes in ∆40p53:WTp53 cells are similar versus WTp53:WTp53 cells and
versus WTp53 cells after Nutlin-3a treatment for 20hr.
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Figure 4.11: Justification for PRO-seq analysis after 3-hour Nutlin-3a in MCF10A
cells. RT-qPCR of nuclear RNA levels for CDKN1A/p21 in either HCT116 or MCF10A cells at
1hr and 3hr. These data show a delayed p53 response in MCF10A cells versus HCT116, with the
3hr induction roughly matching the 1hr p21 nuclear RNA levels from HCT116 cells (arrows).
Past GRO-seq results in 1hr Nutlin-treated HCT116 cells [6] were used to guide the 3hr time
point chosen for MCF10A.
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Figure 4.12: Nutlin induces similar transcriptional changes in WTp53:WTp53 and
WTp53 cells. Summary of PRO-seq data for annotated genes differentially transcribed in
WTp53 (y-axis) versus WTp53:WTp53 cells (x-axis). Dashed line represents p-value 0.01. Venn
diagram shows overlap between WTp53 and WTp53:WTp53 cells.
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Figure 4.13: PRO-seq data in p53-null MCF10A cells confirms robust p53 response in
∆40p53:WTp53 cells. (A) List of the 17 genes that are selectively transcribed in
∆40p53:WTp53 cells (PRO-seq data, 3 hr Nutlin). (B-C) Volcano plots that show differentially
expressed transcripts (PRO-seq) at gene bodies after 3hr Nutlin-3a treatment (versus DMSO
controls) in (B) p53-null or (C) ∆40p53:WTp53 MCF10A cells. Green dots represent
down-regulated and red dots up-regulated transcripts (p-val < 0.01). (D) Ward cluster maps of
enrichment of canonical p53 target genes in either ∆40p53:WTp53 (left) or p53-null MCF10A
cells (right) after 3hr Nutlin-3a treatment (PRO-seq). (E) Representative PRO-seq data from
Nutlin-treated WTp53 or ∆40p53:WTp53 cells, and DMSO controls. Although Nutlin induction
is observed in each cell line, activation is reduced in ∆40p53:WTp53 cells. (F) Ingenuity Pathway
Analysis (IPA) based upon PRO-seq data (3 hr Nutlin treatment). Pathways highlighted in bold
font have been linked to progeroid phenotypes in mice expressing ∆40p53 + WTp53[161, 226].
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Figure 4.14: Nutlin induces similar transcriptional changes (eRNA) in WTp53:WTp53
and WTp53 cells. Summary of PRO-seq data of eRNA transcription for WTp53 (y-axis) versus
WTp53:WTp53 (x-axis). Dashed line represents p-value 0.01. Venn diagram shows overlap
between WTp53 and WTp53:WTp53 cells.
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Figure 4.15: PRO-seq data from all three cell lines (3 hr Nutlin-treated) and DMSO
control. Note the similar responses in WTp53 and WTp53:WTp53 cells, whereas
∆40p53:WTp53 cells lack the ability to induce bidirectional eRNA transcription. The p53
binding motif (p-value < 1x10-5) is shown with a dashed line, and the peaks correspond directly
with ChIP-seq peaks shown in Fig. 4.17.
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Figure 4.16: TFEA reveals differential TF activation in Nutlin-treated cells. (A-C)
Transcription Factor Enrichment Analysis (TFEA) [207] from PRO-seq data (3 hr Nutlin-3a) in
WTp53, WTp53:WTp53, and ∆40p53:WTp53 cells. Whereas p53 induction is robust in WTp53
and WTp53:WTp53 cells, this is not observed in Nutlin-treated ∆40p53:WTp53 cells (p-val <
1x10-6). This reflects a lack of eRNA transcription at p53 binding sites in ∆40p53:WTp53 cells.
Note that TP53 and TP63 have almost identical binding motifs. (D) Transcription Factor
Enrichment Analysis (TFEA) [207] from PRO-seq data (3 hr Nutlin-3a) in WTp53 versus
∆40p53:WTp53 cells, indicating reduced p53 (and p63) activity in ∆40p53:WTp53 cells (p-val <
1x10-6). This reflects a lack of eRNA transcription at p53 binding sites in ∆40p53:WTp53 cells.
Note that TP53 and TP63 have almost identical binding motifs. (E) Metagene analysis showing
average eRNA peak height, genome-wide, at p53 responsive eRNAs (p-val < 0.25) in
WTp53:WTp53 cells.
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Figure 4.17: Additional ChIP-seq data across all 3 cell lines. (A) A series of ChIP-seq
experiments were completed 1hr, 3hr, or 6hr after Nutlin-3a treatment, to assess the
time-dependence of p53 occupancy changes. Metagene analyses are shown (average ChIP-seq
signal) at p53 binding sites in Nutlin-3a-treated WTp53, WTp53:WTp53 or ∆40p53:WTp53 cells
at 1hr, 3hr and 6hr. To our knowledge, following Nutlin treatment, all published p53 ChIP-seq
data sets used 6hr or longer time points. (B) Examples of ChIP-seq data in Nutlin-treated (6 hr)
cells, compared with DMSO controls. ChIP-seq peaks correspond directly with PRO-seq eRNA
peaks shown in Fig. 4.16 (C) Metagene analyses (filtered for peaks containing p53 motif) showing
average ChIP-seq signal, genome-wide, at p53 binding sites in DMSO control versus
Nutlin-treated WTp53:WTp53 cells.
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Figure 4.18: Transcriptional changes in WTp53:WTp53 cells; IPA comparisons for
∆40p53:WTp53 and WTp53. (A) Volcano plot showing differentially expressed mRNAs after
20 hr Nutlin treatment (versus DMSO controls) in WTp53:WTp53 cells. Green dots represent
down-regulated and red dots up-regulated transcripts (p-val < 0.01). (B) Venn diagrams showing
overlap among significantly induced transcripts from PRO-seq data (3 hr Nutlin) and RNA-seq
data (20 hr Nutlin) in WTp53:WTp53 cells. (C) Ingenuity Pathway Analysis (IPA) of canonical
pathways from RNA-seq data after 20 hr Nutlin-3a treatment in ∆40p53:WTp53 versus WTp53
cells flanked by heat maps of log2(fold change) of genes from p53 on the left, and cell cycle
chromosome replication pathway on the right. P53 and cell cycle chromosome replication
represent the most significantly down-regulated or up-regulated pathways, respectively, in
∆40p53:WTp53 cells (versus WTp53).
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Figure 4.19: PRO-seq and RNA-seq data at TP63 and TP73 loci in WTp53,
WTp53:WTp53, and ∆40p53:WTp53 cells. Genome browser views of p63 and p73, showing
that p63 is transcribed (PRO-seq) and expressed (RNA-seq) in the MCF10A cell lines listed at
right. The p73 locus, by contrast, shows transcription of p73-AS1 (p73 antisense 1), a mature
antisense transcript. Neither p63 or p73 was induced by Nutlin-3a treatment. Because p73 was
not transcribed in MCF10A cells, we focused on p63, but we note some transcription is observed
from the adjacent TP73-AS1 locus. Top: DMSO and Nutlin-3a tracks for PRO-seq in WTp53,
WTp53:WTp53, and ∆40p53:WTp53 cells; bottom: DMSO and Nutlin-3a tracks for RNA-seq in
WTp53, WTp53:WTp53, and ∆40p53:WTp53 cells.
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Figure 4.20: The p53 paralog p63 does not impact ∆40p53:WTp53 phenotype or
function. (A) Western blot to probe p63 levels before or after lentiviral p63 knock down. (B)
Growth rate measured over 5 Nutlin treatment cycles; each cycle encompassed 20 hours under
basal (0.1% DMSO) versus Nutlin-treated conditions, splitting cells 1:10, then growth for another
48 hours. (C) Cell cycle analysis (propidium iodide) of each genome-edited cell line in either
control or p63 knockdown. Left shows the cell cycle after 20hr of 0.1% DMSO treatment
(control), right shows the cell cycle after 20hr of Nutlin3a treatment. (D) Knockdown of p63
shows no impact on p53 target gene induction in WTp53, WTp53:WTp53, or ∆40p53:WTp53 cell
lines. RT-qPCR data are shown for p21 and PUMA (2 biological replicates; bars = s.e.m.). N.S.
designates non-significant comparisons.
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Figure 4.21: Additional data on cellular responses to 5FU. (A) Cell cycle analysis
(propidium iodide); chart (inset) represents the average of 3 experiments (bars = standard error
of mean). Arrow highlights increased S-phase in 5FU-treated WTp53:WTp53 cells, similar to
both WTp53 and ∆40p53:WTp53 cells (Fig. 4.4A). (B) Volcano plot showing differentially
expressed mRNAs after 20 hr 5FU treatment (versus DMSO controls) in WTp53:WTp53 cells.
Green dots represent down-regulated and red dots up-regulated transcripts (p-val < 0.01).
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Figure 4.22: The E2F pathway is activated selectively in 5FU-treated ∆40p53:WTp53
cells. (A) RNA-seq data (GSEA) shows that differential E2F2 TF activity characterizes the
∆40p53:WTp53 transcriptional response to 5FU in comparison to WTp53 and WTp53:WTp53.
(B) Ingenuity Pathway Analysis (IPA) showing upstream regulatory transcription factors, inferred
from RNA-seq data in 5FU-treated ∆40p53:WTp53 versus WTp53 cells. (C) The general
upstream regulators (IPA) controlling the cellular response to 5FU are similar (shared inside oval)
between ∆40p53:WTp53 and WTp53 cells, with a few exceptions (p < 0.01). (D) Cell cycle
analysis (propidium iodide); chart (inset) represents the average of 3 experiments (bars =
standard error of mean). Arrow highlights increased S-phase in 5FU-treated p53-null MCF10a
cells (E) Gene Set Enrichment Analysis (GSEA) based upon RNA-seq data from Yang et. al.
comparing p53 -/- HCT116 cells versus WT HCT116 cells after a 24hr 5FU treatment. Pathways
with false discovery rate q-val <0.1 are colored dots. Red represents increased in p53 -/- cells
compared to WT p53 cells and green is decreased. X-axis is normalized enrichment score. Top
significant pathways are in the ranked list.
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Figure 4.23: Alternative p53 clones show similar phenotypic patterns as original clones
selected. (A) PCR validation of additional clones. Blue primer sets span the insertion and red
primer sets have forward primer within the insertion and the reverse primer outside the insertion.
Lack of 500bp band with blue primers indicated homozygous insertion. PCR experiments were
completed on genomic DNA isolated from each of the indicated cell lines. Non-edited MCF10A
cells were tested as an additional control. (B) Western blot validation of each genome-edited cell
line, using a p53 antibody (DO-1). As designed, each tethered construct (∆40p53:WTp53 or
WTp53:WTp53) migrated at around 100kDa, indicative of dimer expression as a single transcript.
(C) Clonal differences between the WTp53, WTp53:WTp53, or ∆40p53:WTp53 clones are
minimal as shown by the relative induction read by RT-qPCR data are shown for p21 (2
biological replicates; bars = s.e.m.). (D) Cell cycle analysis (propidium iodide) of the second clone
for each genome-edited cell line. Cell cycle is performed at 20hr of 0.1% DMSO treatment
(control) and 20hr of Nutlin3a (treatment).



Chapter 5

Conclusion

Throughout this thesis, I have focused on the regulation and impact of transcription factor

(TF) activity. First, I present a computational model that identifies all the TFs currently altering

transcription from a single nascent RNA-sequencing assay, which is called TF profiling. TF profiling

was used to define TF classes, such as cell type specific or shared across cell types. These TF

classes were then used to elucidate distinct characteristics in terms of TF binding preferences and

regulation. In p53-centric studies, I focused on the function of the p53 trans-activation domains

(TAD) and their role in p53 transcriptional regulation. We show that the p53-TAD:Mediator

interface can be blocked to inhibit p53 transcriptional activation. Additionally, we show that the

naturally occurring p53 isoform, ∆40p53 (missing most of TAD1), in conjunction with WTp53,

blunts the cellular p53 response, but does not have a p53 null phenotype. Overall, this work delves

into broadly surveying TF activity and specifically modifying TF function.

5.1 Transcription factor profiling enables novel exploration of TF activity.

In Chapter 2, I present a robust statistical model, called TF profiling, that enables the

identification of actively regulating TFs from a single nascent RNA-sequencing assay. Using this

model we are able to extract known and novel cell type specific TFs, as well as TFs are actively

regulating in many cell types.

This model can be applied to any cell type or tissue with nascent RNA-sequencing data to

robustly determine all actively regulating TFs. This is an effective hypothesis generation tool that
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is easily applied using the publicly available TF Profiler (https://github.com/Dowell-Lab/TF_

profiler). Additionally, we plan to build a website associated with the data in the this thesis

with searchable TF profiles based on cell type, tissue type or any TF of interest. Using the data

produced in this study, we provide a general resource assessing TF activity in numerous cellular

contexts which can be utilized for countless follow-up experiments.

Future work could explore how distinct TF classes (cell type specific or shared) may interact

or alter chromatin in a way to impact each others behavior. One hypothesis is that cell type specific

TFs establish open chromatin regions that are then maintained by shared TFs[257]. Taking this a

step farther, it’s possible that these cell type specific open regions are now targets for the binding of

inducible TFs. That is to say, cell type specific TFs establish cell type specific enhancers and thus

determine which inducible TF binding sites will be utilized in a given cellular context. Alterations

of these binding sites may alter inducible TF activity and modulate their response. If cell type

specific TFs and regions are known, we may be able to predict differing stimulus responses in

different cellular contexts. Consistent with this, Sigauke et. al. shows that while p53 has a highly

conserved network of gene targets[6, 9], the enhancers utilized to drive those targets differ on a cell

type specific basis[218]. It’s possible that the determinant for alternative enhancer usage in distinct

cellular contexts is, in fact, the cell type specific TFs present.

Other future work involving the TF profiles includes integrating them with transcriptional

regulatory networks (TRNs). In Sigauke et. al. we show that the transcription level of enhancer

associated bidirectionals is correlated with the transcription level of the gene in a cell type specific

manner[14, 218]. This correlation can be used to assess which enhancers are driving which genes,

effectively building TRNs through nascent RNA-sequencing data. A natural follow-up to the TF

profiling study in conjunction with the TRN work in Sigauke et. al. is attributing specific enhancers

to TFs within the TF profiles, then linking those enhancers to the gene(s) they regulate. This would

enable one to pair every TF within a profile to every gene that it potentially regulates.

https://github.com/Dowell-Lab/TF_profiler
https://github.com/Dowell-Lab/TF_profiler
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5.2 The modulation of TF trans-activation domains and its impact on tran-

scription.

My work establishes the importance of the p53-TADs in the p53 transcriptional response. I

show that the p53-TAD:Mediator interface is a targetable region for specific transcription inhibition.

I also show how the naturally occurring isoform ∆40p53 harnesses the loss of p53-TAD1 to blunt

the p53 response.

In Chapter 3, we demonstrate the importance of both p53 activation domains in Mediator-

dependent transcription activation. In this study we demonstrate that we can effectively and

specifically inhibit the p53 transcriptional response by targeting Mediator where p53-TAD would

normally bind using a bivalent peptide. An implication is that blocking a single Mediator-TF in-

teraction will not affect other stimulus-responsive or lineage-specific TFs, thus providing a means

to selectively alter gene expression patterns. As TFs have been historically difficult to therapeu-

tically target[42], this study demonstrates that targeting Mediator-TF interfaces may be a viable

alternative.

In future studies, it would be interesting to scale the blocking p53-TAD:Mediator for spe-

cific p53 inhibition to other TF:Mediator interactions. The first objective would be to build a

compendium of known TF:Mediator interaction sites. Additional TFs of biomedical interest with

unknown interaction sites could also be probed for these interfaces. The study here uses a bivalent

peptide to block the Mediator-p53 interaction. While effective for a proof-of-concept study, the

switch to small molecule inhibitors would be essential for viable therapeutics. This is primarily

due to the ease of which peptides can be metabolized by humans. These additional studies would

be of interest for the development of additional therapeutics, specifically in chemotherapy as many

mutated TFs gain oncogenic function[139, 209].

In Chapter 4, we probe the function of naturally occurring ∆40p53 isoform in conjunction

with the WTp53 isoform in a stoichiometrically controlled system (2∆40p53:2WTp53). We show

that the ∆40p53 isoform modulates the WTp53 function to suppress the typical p53 response.
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However, the ∆40p53:WTp53 does not induce a p53 null phenotype. Instead, some p53 target

genes are still activated upon p53 related stress, indicating that ∆40p53:WTp53 dampens the p53

response without abolishing it. Related to this finding is that the ∆40p53:WTp53 doesn’t generate

p53 induced eRNAs. Many studies have linked eRNA transcription with gene expression[14]. As

the ∆40p53:WTp53 causes a dampened p53 response at genes, there is also dampened eRNA

production.

∆40p53:WTp53 can be used as an exemplar to better understand how TFs may use isoforms

to regulate their function. Additionally, it’s a model for how TFs with TAD mutations have altered,

but not absent, transcriptional responses. One possible mode of these attenuated transcriptional

responses could be permitting other sequence-specific, DNA-binding TFs to drive the cellular re-

sponse. Future experiments include probing other TF-TAD isoforms or mutations and their direct

impact on transcriptional output. The focus of these studies would be to explore the way that TFs

utilize their TADs in different contexts to modulate function. In all, the work presented in this

thesis makes significant contributions towards understand TF activity.



Bibliography

[1] US DOE Joint Genome Institute: Hawkins Trevor 4 Branscomb Elbert 4 Predki Paul 4
Richardson Paul 4 Wenning Sarah 4 Slezak Tom 4 Doggett Norman 4 Cheng Jan-Fang 4
Olsen Anne 4 Lucas Susan 4 Elkin Christopher 4 Uberbacher Edward 4 Frazier Marvin 4,
RIKEN Genomic Sciences Center: Sakaki Yoshiyuki 9 Fujiyama Asao 9 Hattori Masahira 9
Yada Tetsushi 9 Toyoda Atsushi 9 Itoh Takehiko 9 Kawagoe Chiharu 9 Watanabe Hidemi 9
Totoki Yasushi 9 Taylor Todd 9, Genoscope, CNRS UMR-8030: Weissenbach Jean 10 Heilig
Roland 10 Saurin William 10 Artiguenave Francois 10 Brottier Philippe 10 Bruls Thomas
10 Pelletier Eric 10 Robert Catherine 10 Wincker Patrick 10, Institute of Molecular Biotech-
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Appendix A

The TFIIH kinase CDK7 governs RNA polymerase II function, RNA

processing and cellular proliferation networks in the nucleus

The work in this section is currently ongoing. Contributing authors from the Taatjes Lab

include Taylor Jones, Jenna Rimel, Olivia Luyties, Jessica Rodino and Grace Shelby.

Additional contributing authors include Jason Marineau, Junjie Feng, Koh, Kotecha, Carulli,

Cooper, Das, Hamman, Hu, Madduri, Rajagopal. Principal investigators include Dylan Taatjes,

Robin Dowell, and Basil Gerber. The focus of this section will be in data produced from the Taatjes

lab, with a focus on NGS data. All raw data in this section can be found in GEO at GSE228346.

This data is private until publication or March 2026. Methods are discussed in Appendix B.4.

A.1 Contribution Statement

My role in this project is centered around NGS data production and analysis. There are two

main types of sequencing data in this project, RNA-seq and PRO-seq. The RNA-seq data was

produced by Dr. Jenna Rimel and analyzed by me. The PRO-seq data was both produced and

analyzed by me.

In terms of RNA-seq data analysis I performed mapping, trimming and quality control. I

also have performed DESeq2 and GSEA analyses. In the future I plan to also perform splicing and

downstream of gene analyses (DoG). Additional RNA-seq data sets will also be processed that were

produced by Syros. For PRO-seq: performed mapping, trimming, qc, DESeq2 and GSEA analyses.

I ran numerous analyses in regards to pause-indices and elongation rates. More complex analyses
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were performed in terms of TF enrichment. For this I ran bidirectional calling and analysis[18],

complex TFEA analyses[207] as well as comparative analyses between TFEA and the OV90 TF

profile (discussed in Chapter 2). Additional analyses will be performed for a deeper dive into

TF function, exploring the activation of inducible genes in the context of CDK7 inhibition, and

rigorously comparing RNA-seq and PRO-seq data.

A.2 Abstract

CDK7 is an important regulatory kinase with defined roles as a transcriptional regulator in

the nucleus and as the master cell cycle regulator in the cytoplasm. Here we use the potent and

selective CDK7 inhibitor, SY5609, to characterize both the transcriptional response and impact of

RNA maturation induced by CDK7 inhibition. We find that CDK7 inhibition does not prevent

inducible transcriptional factor activity, but instead dramatically reduces the function of basally

active transcription factors involved in cellular maintenance and proliferation. These ”basally

active” transcription factors tend to be promoter associated imply a promoter specific role for

CDK7 activity. Additionally, CDK7 inhibition reduces steady-state RNA production for genes

affiliated with cellular proliferation; for example, genes required for mitosis. Collectively, these

results reveal a novel mechanism by which CDK7 coordinates its nuclear and cytoplasmic functions

to control cellular proliferation. In the nucleus, CDK7 kinase activity maintains the activity of

basal TFs that drive proliferative gene expression programs; in the cytoplasm, the CDK7 kinase

activates other CDKs that drive the cell cycle. The novel nuclear function for CDK7 identified here

establishes a link between its nuclear and cytoplasmic functions, which ensures that gene expression

programs in the nucleus match the cell cycle requirements, driven in part by CDK7-regulated CDKs

in the cytoplasm. Collectively, these results further establish CDK7 as a master regulator of cell

homeostasis and proliferation.
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A.3 Introduction

Cyclin-dependent kinase 7 (CDK7) plays an important role in both cell cycle regulation and

transcription. CDK7 operates in a 3-subunit complex containing cyclin H and Mat1 commonly

called the cyclin-activating kinase (CAK). The CAK has well defined cytosolic roles as the ”master

cell cycle regulator”[77]. The CAK catalyzes the phosphorylation of the ”activation loop” (a.k.a.

T-loop) of other cell cycle kinases, subsequently activating their kinase abilities[214]. In the nucleus,

the CAK associates with the general transcription factor (GTF) TFIIH. TFIIH is a member of the

PolII pre-initation complex, thus is poised at the promoter of actively transcribed genes. It’s known

that the CAK is responsible for the phosphorylation of Ser5 and Ser7 of the PolII C-terminal domain

(CTD)[3, 88, 125], which is associated with the transition from initiating to elongating PolII[204].

The PolII CTD provides a docking site for transcriptional co-factors and RNA processing factors.

The phosphorylation of the PolII CTD coordinates the timing of co-factor recruitment[67, 191].

Additionally, the CAK has been shown to phosphorylate factors such as NELF, DSIF and P-

TEFb, which regulate pol II pausing and elongation, splicing factors such as U2AF and SF3B1 and

RNA processing facors such as DDX21[203]. In all, inhibition of CDK7 leads to major defects in

5′ capping[232], successful elongation, splicing and termination [63, 88, 204, 232].

Due to CDK7’s role in both cell cycle control and transcription, numerous cancers depend on

elevated CDK7 activity to drive oncogenesis[144]. Thus, inhibitors of CDK7 have been studied as

potential anticancer therapeutics. Inhibition of CDK7 has anti-proliferative effects across a range

of cancer cell lines as well as in mouse models[136]. Over the years, CDK7 inhibitors have vastly

improved in terms of specificity and potency, with several inhibitors currently in clinical trials as

cancer therapeutics[48].

The development of potent and specific CDK7 inhibitors has enabled us to probe the direct

transcriptional impact of CDK7 inhibition (CDK7i). In a single nascent sequencing assay (PRO-seq)

assay, we are able to address the direct transcriptional responses to CDK7i. Upon CDK7i we see

influences on every stage of the transcription cycle, as well as altered sequence-specific TF activity
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within promoter regions. Contrasting this data with steady-state RNA-sequencing (RNA-seq), we

helped determine the overall cellular impact of CDK7i. Our results show widespread effects of CDK7

inhibition, including defects in RNA processing and unanticipated repression of promoter-associated

TFs. Together, our results reveal novel mechanisms by which CDK7 coordinates cytoplasmic and

nuclear functions to control of cell proliferation.

A.4 Results

In this section I will cover NGS data from two main assays, the first is PRO-seq which is

described in section 1.1.3. For the PRO-seq experiments, cells were pre-treated for 30min with either

DMSO (control, 0.005%) or 50nM SY5609, a potent and specific CDK7 inhibitor[163]. The cells

were then split into three groups, 1) the nuclei were immediately harvested, 2) the cells were heat

shocked (42◦C) for 20min then the nuclei were harvested or 3) the cells were heat shocked for 45min

then the nuclei were harvested. All PRO-seq samples were produced in biological replicate and

sequenced to approximately 100 million reads per replicate. A graphic of the PRO-seq treatment

scheme is shown in Figure A.1A.

The next assay is RNA-seq, which measures steady-state RNA. In RNA-seq, total RNA is

isolated from cells. Then there is an enrichment step selecting for the poly-adenylation of mature

mRNA. Finally, there is a library preparation step and sequencing. Here, all samples were pre-

treated for 30min with either DMSO (control) or a CDK7 inhibitor, which was SY5609 unless

otherwise stated. One set of cells were immediately harvested after the 30min pre-treatment with

SY5609 or control. The next set was heat shocked (42◦C) for 30min followed by a 60min recovery.

In this set the cells were treated with one of three possible CDK7 inhibitors, 1) SY5609, 2) SY5102

or 3) 3MB-PP1 in a CDK7 analog sensitive OV90 cell line. The last set of RNA-seq data was

continuously heat shocked for 120min after the pre-treatment with SY5609 or control. All RNA-

seq samples were produced in biological triplicate and sequenced to approximately 220 million reads

per replicate. A graphic of the RNA-seq treatment scheme is shown in Figure A.1B.



145

A.4.1 CDK7 influences all stages of PolII transcription

CDK7 has known roles in the transcription cycle related to 5′ capping[232], the transition

between initiation and elongation[88], co-transcriptional splicing and PolII termination[88, 203].

From PRO-seq, an example trace of HSP90 (Fig. A.2) exemplifies the impact of CDK7i on the

transcription cycle. In the absence of heat shock, HSP90 is not transcribed. However, after a

45min heat shock there is a shift in the promoter proximal peak, where it is greater upon CDK7i.

This implies a defect in the transition from promoter-proximal pausing into successful elongation,

which occurs at gene 5′ ends. Additionally, with a 45min heat shock there is clearly additional

transcriptional run-on in the CDK7i condition, suggesting a termination defect at gene 3′ ends.

Splicing information is not captured by PRO-seq, but is by RNA-seq. Preliminary RNA-seq splicing

analyses (not shown here) imply that CDK7i induces widespread splicing defects consistent with

work published by Rimel et. al.[203].

We observe that CDK7i induces a general ≈ 20% reduction in overall transcriptional output

across gene bodies based upon PRO-seq data (Fig. A.3A). While there were few significantly

changing genes in the condition SY5609 versus DMSO (no heat shock), there was a general, global

reduction of gene body transcription. When total normalized gene counts for DMSO (x-axis) and

SY5609 (y-axis) were plotted, we observed that the greater gene mass fell below the 1:1 line (slope

of best fit 0.9, Fig. A.3B). Since this was a global trend, proper normalization is essential. Many

differential expression algorithms normalize to the inner-quartile of unchanging genes[155, 206].

If all genes are subtly changing, the internal normalization of these programs will wash out this

signal. For this reason, we systematically normalized the data to the 3′ end of transcribing genes.

We selected genes that are long enough that, assuming a polymerase rate of 3kb/min, the 3′ end

couldn’t be reached within our maximum treatment time (75min, 225kb). The precise normalization

methodology is described in Maas and Dowell 2023[158], and normalization factors are shown in

Figure A.3C.

As previously stated, CDK7 plays an important role in the transition between transcription
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initiation and elongation[88]. Approximately 60 base pairs downstream of initiation PolII pauses

before productive elongation[2]. In PRO-seq data, the ratio of reads within the promoter proximal

peak to the reads within the elongation region is commonly used to quantify the changes in pausing

between conditions. This metric is called the pause-index (PI)[2, 53, 71, 159]. Genes that are

down-regulated by heat shock have increased PIs (relatively more reads in the promoter proximal

peak:gene body) compared to non-heat shocked samples in both control and CDK7i conditions (Fig.

A.4A). This implies relatively less productive elongation for this subset of heat shock genes. Genes

that are up-regulated by heat shock have decreased PIs (relatively fewer reads in the promoter

proximal peak:gene body) compared to non-heat shocked samples in both control and CDK7i

conditions (Fig. A.4B). This implies increased productive elongation for this set of genes. These

results are consistent with those published in Mahat et. al.[159]. When assessing how CDK7i

impacts PI compared to control conditions in the context of heat shock, we see a general increase

in PI at all genes significantly impacted by heat shock (Fig. A.5). This illustrates the importance of

CDK7 in the transition into productive elongation, regardless of up-regulation or down-regulation

of the gene target.

Next, we asked what specific gene expression programs were altered due to 1) heat shock, 2)

heat shock in the context of CDK7i and 3) CDK7i alone. In both heat shock and heat shock +

CDK7i conditions, the predominant response was similar (Fig. A.6A-B, A.7A-B). Surprisingly, heat

shocked cells pre-treated with CDK7i were able to mount a robust heat shock response equivalent

to control heat shock cells. This implies that the inhibition of CDK7 has negligible effects on

inducible PolII transcription. When we contrast CDK7i versus control (at 0min, 20min and 45min

heat shock) we find a relatively mild change in gene transcription programs (Fig. A.8A-B). One

observation is that almost all genes up-regulated by CDK7i (versus DMSO) are extreme run-on

from up-stream genes in the CDK7i condition. Heat shock also increases transcriptional run-on[45].

In SY5609 versus DMSO with 45min heat shock we see compounding effects of transcriptional run-

on both heat shock and CDK7i. In fact, the most significantly up-regulated gene in SY5609 versus

DMSO 45min heat shock is DYNC1H1 (p-value=8.53e−7), the gene down-stream of HSP90 shown
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in Figure A.2.

One gene that is truly significantly up-regulated by 45min heat shock in SY5609 versus

DMSO is the RNA PolII subunit POLR2A (p-value=0.005, log2(Fold Change)=1.53). RNA PolII is

trending up by 20min heat shock in SY5609 versus DMSO (p-value=0.02, log2(Fold Change)=1.29).

One possible explanation is that to compensate for the generally decreased transcriptional output

in CDK7i conditions (Fig. A.3A-B), cellular systems up-regulate RNA PolII to handle the stress

response induced by heat shock.

A.4.2 CDK7 inhibition reduces mRNA associated with proliferative gene programs

We observed a robust heat shock response in gene transcription in both control and CDK7i

conditions (Fig. A.6A-B, A.7A-B). This manifested at the steady-state RNA level as we observe a

strong heat shock response in both control and CDK7i conditions. The heat shock response (20min

and 45min heat shock versus no heat shock) in CDK7i conditions is functionally equivalent to the

response in control conditions (Fig. A.9A-B, A.10A-B). This affirms that CDK7i has no impact on

inducible transcriptional and RNA maturation programs.

Despite a robust heat shock response in both control and CDK7i conditions, when contrast-

ing CDK7i versus control in the context of heat shock, we see alterations in steady-state RNA. At

0min heat shock there was little significant impact on steady-state RNA (n=6 significant genes, all

down-regulated). This is likely because a 30min treatment time is too short for steady-state changes

to manifest. Even so, by 30min the transcript encoding for the transcription factor KLF2 is signif-

icantly reduced almost two fold in CDK7i conditions (p-value=2.64e−5, log2(Fold Change)=0.63,

Fig. A.11A). KLF2 is part of the Kruppel family of transcription factors (TFs) which bind the

CACCC box within promoters. Generally, this family of TFs are associated with proliferative

programs[199].

Both RNA-seq experiments contrasting SY5609 versus DMSO in the context of heat shock

have far more significantly changing gene signatures (Fig. A.11A). This is likely partially due to the

heat shock stimulus, and partially due to the increased experiment time permitting steady-state
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RNA changes to manifest (120min and 150min experiment length before RNA harvest; see Fig. A.1

for details). In both heat shock conditions SY5609 versus DMSO causes mostly down-regulation of

gene targets. These gene targets are not related to the heat shock response, but rather many are

generally related to the reduction of cellular proliferation (Fig. A.11B).

In analyzing the RNA-seq data with alternative CDK7 inhibitors SY5102 and 3MB-PP1

versus DMSO we find that the CDK7 inhibition response in the context of heat shock is consistent

to that of SY5609 (Fig. A.12A-B). This indicates that we have a reliable set of genes that are

impacted by CDK7i, which are enriched for the negative regulation of cellular proliferation (Fig.

A.11B). Taken together, despite the modest effect of CDK7i on gene transcription, there is a general

reduction of steady-state RNA related to cellular proliferation.

A.4.3 CDK7 activates a common core TF network that drives proliferation across

cell types

Since CDK7i has an anti-proliferative role at the level of steady-state RNA, we asked whether

TFs associated with proliferation were also impacted by CDK7i. To address this we performed TF

inference analyses. TF inference is discussed in section 1.2.3, but briefly TF inference measures

the co-localization of TF motifs with PolII initiation sites genome-wide[17, 207]. These methods

depend on reliable identification of PolII initiation regions, which are annotated based on their

canonical bidirectional signal[18, 240]. A summary of the PolII initiation regions identified in this

study are summarized in Figure A.13A-C.

We first ran transcription factor enrichment analysis (TFEA) assessing the heat shock re-

sponse (20min/45min vs 0min) in control and CDK7i conditions. We found that the main respon-

sive TFs were heat shock factors (HSF1, HSF2, SRF1, etc.; Fig. A.14, A.15). There was no major

difference in heat shock factor activity in response to CDK7i compared to control, indicating that

CDK7i is not strongly impacting stimulus-responding TFs. The heat shock factors are able to

mobilize and alter heat shock gene targets in transcription (Fig. A.6A-B, A.7A-B) which manifest

into steady-state RNA (Fig. A.9A-B, A.10A-B).
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When we look at SY5609 versus DMSO (no heat shock; Fig. A.16A) we find a set of TFs that

have a high frequency of motif hits, and tend to be subtly activated or repressed. Many of these

significantly changing TFs are associated with proliferation, such as KLF and ETS factors. This led

us to ask whether the TFs that are impacted by CDK7i are disproportionately enriched for factors

that are active in baseline cellular conditions (ie no heat shock, no CDK7i). To test this we used

another TF inference method called TF profiling. This method is discussed in depth in Chapter

2, but briefly we infer TFs that are activated in baseline conditions by comparing experimentally

calculated motif displacement scores (observed, y-axis) to motif displacement scores calculated from

a statistically relevant model (expectation, x-axis; Fig. A.16B). When we compare the TFs that

are ON in baseline conditions, to TFs that are changing upon CDK7i, we find that, generally, all

bassally active TFs have altered activity upon CDK7i. Generally, the TFs called as ON-UP in

baseline conditions are repressed by CDK7i (Fig. A.16C). Next, we asked if the regions driving this

effect were predominantly promoters (ie at the transcription start site of a gene) or at enhancers.

We found that the TFs repressed by CDK7i were disproportionately promoter associated (Fig.

A.16D).

This observation is retained through the heat shock time course when comparing CDK7i to

control (Fig. A.17), but stronger enhancer driven signals begin to appear over time. This is possibly

due to the mobilized heat shock response at enhancers being equal in control and CDK7i, but the

secondary effects may manifest less robustly in CDK7i conditions. For example, TFs downstream

of heat shock factors (ie secondary TFs) may not be as robustly transcribed (Fig. A.3A-B), leading

them to mount a less effective secondary transcriptional response. One general concern with this

methodology is that the highest impacted TFs by CDK7i tend to have very GC rich motifs which

can lead to biases in TF inference methods due to the GC rich nature of PolII initiation sites (Fig.

A.13B). This was accounted for by correcting for all TFEA results with a single linear fit, shown

in Figure A.18 and discussed further in section B.4.



150

A.5 Discussion and future directions

In this work we show that CDK7 has a general regulatory role in the transition from initiation

to elongation, and have preliminary evidence that it’s important for PolII termination. The inhi-

bition of CDK7 causes a general ≈20% decrease in global gene transcription. After sufficient time

(30min treatment with SY5609, followed by a 45min heat shock), it seems that cellular programs

begin to compensate for the general reduction of transcription by up-regulating RNA PolII itself.

We also show that CDK7 has negligible effects on inducible transcription (heat shock). In

CDK7i conditions, cells are able to mobilize heat shock factors in response to heat shock. These

factors still impact their gene targets, which go on to become viable, steady-state transcripts. This

implies that inducible gene programs (such as heat shock) are regulated by distinct mechanisms

and/or factors. This is consistent with work by others, indicating that the requirements at inducible

gene promoters differ from those that are basally operational[101, 176]. Furthermore, stimulus

responding TFs tend to be associated with intergenic regions, rather than promoters (work in

progress, see Chapter 2). It could be that CDK7 plays a more promoter specific role with TFs,

as well as in productive elongation in genic regions. One potential caveat is that TF inference is

picking up large changes in promoters, and attributing the behavior to sequence specific TFs, when

in reality it could be that CDK7 is simply modulating the behavior of RNA PolII, as indicated by

the broad increase in promoter-proximal pausing[63, 67, 88, 191, 204, 232]. Regardless, this alludes

to a promoter specific role for CDK7 in transcriptional regulation.

We additionally show that CDK7 has a pro-proliferative role in the nucleus through two

aspects. The first is that, CDK7 is required to maintain the function of core TFs that drive

proliferation in most cell lines. It is possible that CDK7 exerts control over these core TFs through

the TF RB1. RB1 is a high confidence target for CDK7 inhibition[203]. Preliminary data in the

lab also shows that RB1 is depleted within 30min of SY5609 treatment, and remains reduced for

up to 4hrs by western blot (work by Grace Shelby). It has been recently shown that RB1 plays an

important role coordinating core TFs to control the cell cycle and MAPK-responsive genes[211].
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The second mechanism by which CDK7 appears to regulate cell proliferation is through

regulation of genes that control cell proliferation. Proliferative genes are not dramatically impacted

at the transcriptional level, leading to two possible explanations for the negative regulation of

these gene programs. The first could be that the general reduction of gene transcription caused

by CDK7i (≈ 20%) reduces the accumulated steady-state RNA enough to be observable by our

detection methods. Alternatively, CDK7i may induce detrimental splicing or termination defects

(in the form of down-stream of gene expression- DoGs) disproportionately at proliferative genes.

We plan to do in-depth splicing and termination analyses for this study. We also plan to do a

long-read sequencing experiment (0min heat shock and 120min heat shock +/- SY5609) to validate

results regarding our splicing and termination analyses. Regardless, the current results taken

together reveal a mechanism by which CDK7 coordinates cytoplasmic and nuclear control of cell

proliferation.

Future work, beyond the scope of this study, could explore the relationship between tran-

scriptional run-on and DoG expression associated with steady-state RNA. We observe here that

heat shock[45] and CDK7 inhibition both increase transcriptional run-on in a compounding effect.

We observe (but have not quantified) DoGs in the RNA-seq data for both heat shock and for CDK7

inhibition. How and why certain genes have excessive transcriptional run-on is unknown. How that

run-on correlates with DoGs, and whether this process is functionally relevant is also unknown.

This could serve as a basis for an entirely independent project using the wealth of data generated

for this study.
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Figure A.1: Experimental design for OV90 CDK7 inhibition in the context of heat
shock Schematic for the experimental design. A) Cells for PRO-seq were pre-treated (grey) for
30min with either DMSO (blue circles) or SY5609 (orange circles). Cells were heat shocked at
42◦C (gold) for 0min, 20min or 45min before the nuclei were harvested for library preparation. B)
Cells for RNA-seq were pre-treated (grey) for 30min with either DMSO (green circles) or a CDK7
inhibitor (purple/pink circles). There are three sets of RNA-seq experiments. In the first set, the
RNA was extracted immediately after the pre-treatment (top). The second set (middle) was
pre-treated with DMSO or one of three distinct CDK7 inhibitors, SY5609, SY5102 or 3MB-PP1
(analog sensitive cell line). This set was heat shocked at 42◦C for 30min (gold) before undergoing
a 60min recovery at 37◦C (teal). The final set (bottom) was pre-treated with DMSO or SY5609
before undergoing a 120min heat shock at 42◦C with no recovery.
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Figure A.2: Example trace at HSP90. This PRO-seq trace at a canonical heat shock gene.
With no heat shock (top two traces) this gene is not transcribed. At 20min heat shock (middle
two traces) the gene is activated. At this point it already seems like there is more run-on in the
SY5609 sample compared to DMSO. By 45min heat shock (bottom two traces) there is clearly
additonal run on in the SY5609 sample compared to DMSO, indicating that there may be a
splicing/termination defect.

Figure A.3: SY5609 treatment in OV90 cells causes a mild global reduction of gene
body transcription in normalized PRO-seq data. A) Violin plots demonstrating the
average 20% decrease in gene body transcription upon SY5609 treatment (blue-DMSO replicate 1
and replicate 2, orange- SY5609 replicate 1 and replicate 2). 2) Scatter plot of normalized count
values for DMSO (x-axis) versus SY5609 (y-axis). The expectation of no reduction in gene body
transcription is a slope 1.0 (plotted here). The best fit slope is 0.9. The central mass of normalized
gene counts falls below the 1:1 line. This also indicates a general, mild reduction in gene body
transcription upon treatment with SY5609. C) Sample normalized values calculated using the
virtual spike-in values. These values are relative normalization factors (relative to DMSO 0 R1).
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Figure A.4: Heat shock treatment induces increased pause-index at down-regulated
genes, and increased pause release (decreased pause index). Pause-index (PI; calculated
as the ratio of promoter-proximal signal (TSS):gene body signal) plotted as a cumulative
distribution. The heat shock (HS) treatment gives the expected result of A) an increase in PI at
genes down-regulated with heat shock in both DMSO (darker blue indicates longer heat shock)
and SY5609 (darker orange indicates longer heat shock) conditions, and B) a decrease in PI at
genes up-regulated with heat shock[159].

Figure A.5: SY5609 treatment increases pause-index relative to control. In 45min heat
shock (HS) conditions, SY5609 (orange) causes increased pause-index (PI) regardless of
up-regulation or down-regulation compared to the DMSO control (blue). This indicates a lack of
productive elongation upon CDK7 inhibition.
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Figure A.6: PRO-seq differential expression and gene enrichment analyses upon heat
shock. A) PRO-seq gene body results of the differential gene profile at 20min (top) and 45min
(bottom) heat shock versus 0min control. Each point represents a coding gene in the genome.
The x-axis shows the log2 fold change of the gene counts between the two conditions, where genes
on the left (light blue) are significantly down-regulated by HS and on the right (dark blue) are
significantly up-regulated by HS (p-value < 0.01). The y-axis is the -log10 of the adjusted
p-value, where a higher value indicates greater confidence that a given gene is differentially
expressed. B) The gene enrichment analysis results based on the gene set in A. The x-axis is the
normalized enrichment score (NES) of a GO biological processes pathway. The y-axis is the FDR
corrected q-value, where points at the bottom are the highest confidence pathways. One of the
highest confidence up-regulated pathways at both 20min and 45min HS is cellular heat shock
response (20min: NES=2.03, q-val=0; 45min: NES=2.15, q-val=0.004).
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Figure A.7: PRO-seq differential expression and gene enrichment analyses upon heat
shock in the context of CDK7 inhibition. A) PRO-seq gene body results of the differential
gene profile at 20min (top) and 45min (bottom) heat shock versus 0min control after a 30min
pre-treatment of SY5609. Each point represents a coding gene in the genome. The x-axis shows
the log2 fold change of the gene counts between the two conditions, where genes on the left (light
orange) are significantly down-regulated by HS and on the right (dark orange) are significantly
up-regulated by HS (p-value < 0.01). The y-axis is the -log10 of the adjusted p-value, where a
higher value indicates greater confidence that a given gene is differentially expressed. B) The gene
enrichment analysis results based on the gene set in A. The x-axis is the normalized enrichment
score (NES) of a GO biological processes pathway. The y-axis is the FDR corrected q-value,
where points at the bottom are the highest confidence pathways. One of the highest confidence
up-regulated pathways at both 20min and 45min HS is cellular heat shock response after SY5609
treatment (20min: NES=1.89, q-val=0; 45min: NES=2.26, q-val=0).
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Continued on next page.
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Figure A.8: PRO-seq differential expression and gene enrichment analyses contrasting
CDK7 inhibition versus control across heat shock time points. A) PRO-seq gene body
results of the differential gene profile +/- SY5609 at 0min, 20min and 45min heat shock (HS).
Each point represents a coding gene in the genome. The x-axis shows the log2 fold change of the
gene counts between the two conditions, where genes on the left (blue) are significantly
down-regulated by CDK7 inhibition and on the right (orange) are significantly up-regulated by
CDK7 inhibition (p-value < 0.01). The y-axis is the -log10 of the adjusted p-value, where a
higher value indicates greater confidence that a given gene is differentially expressed. B) The gene
enrichment analysis results based on the gene set in A. The x-axis is the normalized enrichment
score (NES) of a GO biological processes pathway. The y-axis is the FDR corrected q-value,
where points at the bottom are the highest confidence pathways. One of the highest confidence
down-regulated pathways across all time points is cell cycle DNA replication (0min: NS=-1.68,
q-val=0.05, 20min: NES=-1.73, q-val=0.08; 45min: NES=-1.74, q-val=0.06).



159

Figure A.9: RNA-seq differential expression and gene enrichment analyses upon heat
shock. A) RNA-seq results of the differential gene profile at 30min (top) and 120min (bottom)
heat shock versus 0min control. Each point represents a coding gene in the genome. The x-axis
shows the log2 fold change of the gene counts between the two conditions, where genes on the left
(light green) are significantly down-regulated by HS and on the right (dark green) are
significantly up-regulated by HS (p-value < 0.01). The y-axis is the -log10 of the adjusted
p-value, where a higher value indicates greater confidence that a given gene is differentially
expressed. B) The gene enrichment analysis results based on the gene set in A. The x-axis is the
normalized enrichment score (NES) of a GO biological processes pathway. The y-axis is the FDR
corrected q-value, where points at the bottom are the highest confidence pathways. One of the
highest confidence up-regulated pathways at both 30 and 120min HS is cellular heat shock
response (30min: NES=1.90, q-val=0.0002; 120min: NES=1.91, q-val=0.006).
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Figure A.10: RNA-seq differential expression and gene enrichment analyses upon heat
shock in the context of CDK7 inhibition. A) RNA-seq results of the differential gene profile
at 30min (top) and 120min (bottom) heat shock versus 0min control. Each point represents a
coding gene in the genome. The x-axis shows the log2 fold change of the gene counts between the
two conditions, where genes on the left (light purple) are significantly down-regulated by HS and
on the right (dark purple) are significantly up-regulated by HS (p-value < 0.01). The y-axis is the
-log10 of the adjusted p-value, where a higher value indicates greater confidence that a given gene
is differentially expressed. B) The gene enrichment analysis results based on the gene set in A.
The x-axis is the normalized enrichment score (NES) of a GO biological processes pathway. The
y-axis is the FDR corrected q-value, where points at the bottom are the highest confidence
pathways. One of the highest confidence up-regulated pathways at both 30 and 120min HS is
cellular heat shock response (30min: NES=1.68, q-val=0.04; 120min: NES=1.92, q-val=0.001).
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Continued on next page.
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Figure A.11: RNA-seq differential expression and gene enrichment analyses
contrasting CDK7 inhibition versus control across heat shock time points. A)
RNA-seq differential gene results +/- SY5609 at 0min, 30min and 120min heat shock (HS). Each
point represents a coding gene in the genome. The x-axis shows the log2 fold change of the gene
counts between the two conditions, where genes on the left (green) are significantly
down-regulated by CDK7 inhibition and on the right (purple) are significantly up-regulated by
CDK7 inhibition (p-value < 0.01). The y-axis is the -log10 of the adjusted p-value, where a
higher value indicates greater confidence that a given gene is differentially expressed. B) The gene
enrichment analysis results based on the gene set in A. The x-axis is the normalized enrichment
score (NES) of a GO biological processes pathway. The y-axis is the FDR corrected q-value,
where points at the bottom are the highest confidence pathways. Many down-regulated pathways
center around the reduction of cellular proliferation.
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Figure A.12: RNA-seq differential expression analysis in three CDK7 inhibition
conditions at 30min heat shock. A) RNA-seq differential gene results +/- 3MBPP1 in OV90
CDK7 analog sensitive cells (top left), +/- non-covalent inhibitor SY5102 (bottom left) and +/-
SY5609 (top right). Each point represents a coding gene in the genome. The x-axis shows the
log2 fold change of the gene counts between the two conditions, where genes on the left (green)
are significantly down-regulated by CDK7 inhibition and on the right (purple) are significantly
up-regulated by CDK7 inhibition (p-value < 0.01). The y-axis is the -log10 of the adjusted
p-value, where a higher value indicates greater confidence that a given gene is differentially
expressed. B) The overlap of significant genes (p-value < 0.01) upon CDK7 inhibition showing
that the CDK7 gene targets are largely shared across different inhibition conditions.



164

Figure A.13: Description of bidirectional transcripts identified in OV90 PRO-seq
experiments. Tfit was used to identify bidirectional transcripts across the twelve PRO-seq
samples (+/- SY5609 at 0min, 20min and 45min heat shock in biological replicate)[18]. These
samples were merged into a master file by muMerge[207] and were used for all subsequent
bidirectional analysis, which includes TFEA results discussed in Figures A.14,A.15,A.16,A.17 and
A.18, as well as TF profile results in Figure A.16. A) Histogram of 94,188 tfit regions that are in
one to twelve samples. This shows roughly 40% of bidirectionals are identified in only one sample,
approximately 60% of regions are shared across samples. Only 5.5% of regions are in all samples,
these regions are enriched for promoters. B) Base composition profile for the 94,188 bidirectional
regions in OV90 cells. The y-axis shows the probability of a base (A/T/C/G) occurring at a given
position. On the x-axis 0bp represents the location of PolII initiation (µ). This shows the sharp
GC preference at initiation that declines as distance from µ increases. C) Upset plots showing
region intersections at 0min heat shock (HS; top), 20min HS (middle) and 45min HS (bottom).
The bars on the left represent total regions in the condition indicated. The dots represent the
conditions that a given region is represented in from none of the conditions in that HS time point
(far left) to all conditions for that HS time point (far right). The top bars show how many regions
meet the condition intersections defined by the dots below. The upset plots show no evidence of
novel bidirectionals specific to SY5609. The highest fraction of region representation is at 45min
HS, possibly due to new bidirectional regions forming in response to the external stress. A large
factor in region representation on a per sample basis is read depth, where deeper samples capture
more bidirectional regions. The lowest read depth sample is SY5609 0min HS Rep 2 (SY 0 R2,
59.6 million reads) and has the fewest bidirectionals captured across all conditions. Given this
data, it is recommended to have at least 100 million reads for robust bidirectional identification.
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Figure A.14: PRO-seq transcription factor enrichment results upon heat shock.
Transcription factor enrichment analysis (TFEA) MA plot for 20min (top) and 45min (bottom)
heat shock (HS) where each dot represents a single TF with significantly activated in dark blue
and significantly repressed in light blue (p-value < 0.01). The x-axis shows total TF motif hits
and the y-axis shows a measure of TF enrichment accounting for the co-localization of a TF motif
with PolII initiation regions genome wide[207]. Heat shock factors (HSFs) are the most highly
enriched TFs in these condition.
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Figure A.15: PRO-seq transcription factor enrichment results upon heat shock in the
context of CDK7 inhibition. Transcription factor enrichment analysis (TFEA) MA plot for
20min (top) and 45min (bottom) heat shock (HS) where each dot represents a single TF with
significantly activated in dark orange and significantly repressed in light orange (p-value < 0.01).
The x-axis shows total TF motif hits and the y-axis shows a measure of TF enrichment
accounting for the co-localization of a TF motif with PolII initiation regions genome wide[207].
Heat shock factors (HSFs) are the most highly enriched TFs in these condition.
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Figure A.16: Treatment with SY5609 reduces activity of promoter associated TFs. A)
TFEA MA plot for SY5609 versus DMSO where each dot represents a single TF with significantly
activated in orange and significantly repressed in blue (p-value < 0.01). The x-axis shows total
TF motif hits and the y-axis shows a measure of TF enrichment accounting for the co-localization
of a TF motif with PolII initiation regions genome wide[207]. B) TF profile for OV90 cells
showing basally activated TFs. Discussed in depth in Chapter 2, each point represents an
individual TF. The TF motif-displacement score is assessed in experimental conditions (y-axis) or
against a position specific background model (x-axis). The contrast between the experimental
data and the model provides the means to attribute significance to basally activated TFs, where
orange is enriched and blue is depleted. C) Heatmap contrasting the TF profile identified factors
(left, from analysis in panel B) with the TFEA enrichment results (right, from panel A). Red
indicates an enriched TF, blue indicates a repressed or depleted TF. TFs that are enriched/active
in the TF profile tend to have negative enrichment scores (repressed/inactive) in TFEA. This
result suggests that CDK7 inhibition by SY5609 causes widespread repression of basally active
TFs in OV90 cells. D) Heatmap showing the percent promoter content for all TFs identified by
ChIP-seq from cistromeDB[167, 258](top) where darker blue indicates a higher promoter
percentage, compared to the TFEA results (bottom: blue=repressed; red=enriched, heat shows
-log10(p-adj) multiplied by the direction of enrichment change) showing that SY5609 treatment
disproportionately impacts TFs with motifs that are more promoter associated.
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Figure A.17: PRO-seq transcription factor enrichment results contrasting CDK7
inhibition versus control across heat shock time points. Transcription factor enrichment
analysis (TFEA) MA plot for +/- SY5609 at 20min (top) and 45min (bottom) heat shock (HS).
Each dot represents a single TF with significantly activated in orange and significantly repressed
in blue (p-value < 0.01). The x-axis shows total TF motif hits and the y-axis shows a measure of
TF enrichment accounting for the co-localization of a TF motif with PolII initiation regions
genome wide[207]. Promoter associated TFs are the most highly repressed TFs in these
conditions. SY5609 versus DMSO 0min HS is shown in Figure A.16.



169

Figure A.18: Correction for GC-bias in TFEA results across all conditions. TFEA has
an internal feature which corrects from the over-representation of GC rich motifs at initiation
regions (Fig. A.13B)[207]. The non-corrected TF enrichment score (E-score) on the y-axis is a
measure of TF activation or repression in a given comparison, 0min heat shock SY5609 versus
DMSO for example. The x-axis shows the GC content of each TF motif used in the experiment.
The points represent the non-corrected E-score for a given TF in a single comparison. A linear
regression of the points is fit to correct for GC biases and corrected E-Scores are the basis of all
subsequent analyses. In solving the linear equation the most GC rich motifs will have the largest
correction value (ie the larger the x-value, the more the y-value will change). Across individual
comparisons the motif GC content will be invariable but the non-corrected E-score will vary. One
observation was that CDK7 inhibition seemed preferentially impact TFs associated with
promoters (Fig. A.16D). Promoter associated factors tend to have more GC rich motif preferences
(discussed in detail in Chapter 2). For this reason, one concern was that the observation that
CDK7 inhibition impacts promoter-associated TFs was simply an artifact of the GC correction.
For this reason, all relevant comparisons in this study (DMSO heat shock time course, SY5609
heat shock time course and SY5609 versus DMSO across all heat shock, n=9 comparisons) were
plotted for a single GC correction all together, shown here. This means that the GC correction
was equivalent across all conditions, and the observation that CDK7 inhibition preferentially
impacts promoter associated TFs was still observed.



Appendix B

Methods

B.1 TF Inference Methods

Curating data from DBNascent: All nascent RNA-seq data was curated from NCBI

GEO by the Dowell Lab. Data processing was primarily performed by Rutendo Sigauke and Lynn

Sanford[218]. To prepare the data for TF profiling all tfit[18] calls in PRO-seq and GRO-seq human

experiments (mapped to hg38) were examined. A minimum quality score of ”4” was required for all

samples. This score indicates a minimum of 5 million reads, over 50% of reads map to the reference

genome and less than 95% duplication. As many biological replicates were kept as possible, but

if one replicate passed this quality metric it was still used for subsequent analysis. All tfit calls

between biological replicates within a given paper were merged using muMerge[207]. This was done

to maximize number of reliable calls per experimental data set. After merging biological replicates,

we required that the region within 2h of µ had a base composition of at least 50% GC content. The

reason for this requirement some data sets have prohibitively low complexity– likely due to failed

pull-down of nascent RNA. This results in tfit calling noise as PolII initiation regions and causes

the base composition surrounding “µ” to be close to genomic background (ie ≈ 40% GC). The

final requirement is that at least 50% regions must not be at an annotated promoter. If promoter

regions are over-represented then we lose the ability to call cell type specific TFs, and only call

shared TFs leaving the data set overall uninformative.

After this curation process, we ended up with 126 distinct data sets from 88 papers that rep-

resent 79 unique cell lines under basal conditions (n=299 unique biological samples). An additional
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161 data sets were curated from 65 papers that represent 46 unique cell lines under perturbation

or genome modified conditions (n=411 unique biological samples).

Building a training data set: The training data was based on the 126 distinct control

data sets. First, we used muMerge[207] to merge all 126 data sets (ie tfit calls merged by biological

replicate) into a single master file. Due to technical limitations, the merge had to be performed

step-wise rather than all data at once. Mainly, if a single region was called in many data sets, the

confidence of µ would converge to 0 nucleotides causing the program to fail. For this reason, all

samples of a given tissue type were merged into a tissue specific region file. Any region less than

20nt were windowed to be at least 20nt in length. The tissue specific region files were then merged

into the master file.

This resulted in a master file that represented all PolII initiation regions captured in 79 unique

cell lines across 88 papers. These regions were then divided into two populations, enhancers and

promoters. All regions (windowed by h=150) within 1000bp (300bp upstream, 700bp downstream)

of refseq annotated transcription start site (TSS) were defined as promoters. Any region outside

of this parameter was defined as an enhancer. This resulted in a total of 53,244 promoter regions,

and 611,963 enhancer regions within the master annotation file.

Both regions were treated separately, but identically to extract two sets of probabilities to

build 106 simulated sequences. First all regions were windowed by H=1500. Sequences were

extracted using bedtools getfasta. Using all of the extracted regions, conditional probabilities

were calculated in a position specific manner for the standard nucleotides (A,T,C,G), shown in

Figure 2.2A. Code used to calculate the probabilities and generate the sequences can be found at

https://github.com/Dowell-Lab/TF_profiler, within the sequence generator module.

Quantification of TF gene transcription: Refseq gene counts for every SRR within

DBNascent were counted over hg38 using Rsubread, featurecounts[218]. For all SRRs within a

biological replicate for a given data set (both control, n=126 and perturbation, n=161), the mean

RPKM was calculated for every gene. Only the highest mean RPKM isoform for every gene was

retained for additional analyses.

https://github.com/Dowell-Lab/TF_profiler
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Motif scanning: Motif scanning was performed using the MEME suite function FIMO

scan[19]. This scan was performed using a flat background model (equal distribution assumed of

the four canonical nucleotides). The threshold was set to 1e-5. The motif files used were curated

from HOCOMOCO version 11[134]. The scan was performed across the human genome (hg38) and

these motif instances were used for subsequent analysis. Internal to the TF profiler program the

motif scan can also be performed de novo across only the bidirectional regions provided, or take

in pre-scanned regions genome wide. Motif scanning was performed on simulated sequences using

the same parameters. TF profiler will generate sequences based on the provided annotation file

and scan those regions for motif hits, or will take pre-calculated distance tables for the background

model.

TF profile distance calculations: To measure TF co-localization the relative distance

between a motif hit and the center of the bidirectional transcript must be assessed. The distance for

all motif hits within the large window (H=1500) of a given region were calculated. This distance

is calculated as the distance from the center of the motif to the distance of the center of the

bidirectional. For motifs and regions of odd length the center is rounded to the nearest even integer

per the native python rounding function.

Each motif instance is associated with the distance to the center of the bidirectional as well

as two ranking metrics for the occasion that there is more than one motif instance in a given

bidirectional region. The distance rank assesses which motif instance is closest to the center of

the bidirectional, where 1 is the closest. The quality rank defined by the fimo score where 1 is the

highest quality motif hit. All motif instances within the large window are stored within the distance

tables. Code used to generate these tables can be found at https://github.com/Dowell-Lab/

TF_profiler, within the distance module. For scoring purposes, only one motif hit per region is

counted. If there are multiple motif instances within a given region then 1) the highest quality

instance is kept based on fimos quality score. If there are multiple hits of equivalent highest quality

then the hit closest to the center is used.

TF profile scoring: The motif-displacement score (MD-score) and associated statistics

https://github.com/Dowell-Lab/TF_profiler
https://github.com/Dowell-Lab/TF_profiler
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are described in detail in section 2.4.1. Briefly, the MD-score is defined by equation 2.1. This

metric measures motif co-localization with the center of the bidirectional transcripts within a given

data set. This score is compared to the model calculated score defined by equation 2.3.

To statistically define whether the MD-score is higher (ON-UP) or lower (ON-DOWN) than

expected, we fit a set proportion of inlier TF MD-scores to a linear equation. For the meta-

analysis in this study all TFs across all data sets were set in two main linear fits, control conditions

(Fig. 2.4A, n=48,888 points, 126 data sets with 388 TFs) and perturbation conditions (Fig. 2.4D,

n=62,468 points, 161 data sets with 388 TFs). The outlier percentage was tuned to obtain a slope

of 1.0 and an intercept of 0.0. The normal distribution of the residuals of the inliers was used to

attribute a p-value for each TF across all data sets (Fig. 2.4B,E). The data was fit all together

to get a better estimate the distribution of the residuals. This was attempted using single SRRs

(ie biological replicates were not merged prior to the analysis) and resulted in abnormally high

slopes (m≈1.5), negative intercepts and very large variance resulting in very few TFs being called

significant. The TF profiler program fits the residuals of the inliers for a single data set at a time by

default. This can be found at https://github.com/Dowell-Lab/TF_profiler, within the scoring

and statistics modules.

Clustering and TF classes: Clustering TF profiles was performed using the R package

ComplexHeatmaps which utilizes the native R function hclust. Profiles were defined using numerical

representation of ON-UP as 1, ON-DOWN as -1 and not significant as 0. To clean noise within the

data, if a TF was not represented in at least 50% of the data sets in a given cell line it was treated

as not significant.

The Eucledian distances were used followed by wards method to cluster the profiles. Numer-

ous distance metrics and clustering metrics were tested, including pearson and kendall distances as

well as k-means and complete clustering. Additionally, seriation was attempted via the seriation R

package. While most methods reliably recapitulated the cell specific clusters, eucledian/ward did

so most cleanly and consistently. Seriation methods most robustly captured cell type of all other

methods, but the cell specific TF clusters were not visually clear, thus were not used for central

https://github.com/Dowell-Lab/TF_profiler
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figures. Clustering in a cut-off independent fashion was performed by clustering the -log(p-value)

for each TF across profiles. This methodology also robustly recapitulated cell line specific clus-

ters. Manual reordering of the dendrogram nodes for clarity was performed using the R package

dendextend.

TF classes were extracted from this data in four main categories, unique, shared, ubiquitously

shared and environmentally responsive. Each cell line was assigned a consensus TF profile, in which

the TFs are represented in at least 50% of the data sets of a given cell line. This resulted in one

consensus profile per cell line that were then systematically compared. If a TF was only in a specific

cell type, it was identified as unique. If a TF was in some but not cell types, it was identified as

shared. If a TF was in all profiles it was identified as ubiquitously shared. Finally, if a TF was

called in a perturbation profile, but not in the basal profile for the same cell type it was identified

as environmentally responsive. The core classes in this study were defined from the six most highly

represented cell lines within DBNascent (HCT116, MCF7, ESC, HUVEC, K562, HeLa).

CistromeDB data curation: Both TF and histone ChIP-seq region data was obtained

from CistromeDB[167, 258]. Within this database there are six total quality parameters assessed

for every ChIP-seq experiment. These can be broken into two main categories, mapping and peak

quality. The mapping scores account for sequence quality, number of unique sequences and unique

molecule representation after sub-sampling the data. The peak scores account for the number of

peaks, the signal to noise ratio and the overlap of peaks with accessible regions. In order for the

ChIP-seq sample to be used here we required the sample to pass at least one parameter within

both mapping and peak scores.

CistromeDB contained TF ChIP-seq data for 316 TFs within HOCOMOCO v11 core set

(n=388 total) that passed the defined qc standards. The percentage of promoter associated regions

was calculated by the total number of regions within 1000bp of the refseq annotated transcription

start site (TSS) over the total number of regions within that sample. In many cases there were

multiple ChIP-seq samples for a single TF. In this case the mean promoter percentage was used.

Heatmaps in figure 2.3 use cistromeDB regions from five independent samples per condition. Dis-
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tance tables were generated using the TF profiler program. The R package ComplexHeatmaps was

used to plot the motif localization using the generated distance tables.

B.2 Peptide Methods

As published in Allen et. al. [5].

Affinity purification-mass spectrometry: Affinity purification was completed from

HeLa cell nuclear extract with a GST fusion of the p53AD (residues 1–70) immobilized on Glutathione-

Sepharose beads (GE Life Sciences). After binding, the resin was washed five times with 10 column

volumes (CV) 0.5 M KCl HEGN (20 mM Hepes pH 7.6; 0.1 mM EDTA; 10% Glycerol; 0.1% NP-40

alternative) and once with 10 CV 0.15 M KCl HEGN (0.02% NP-40 alternative). Bound proteins

were eluted with 30mM GSH in elution buffer (80 mM Tris, 0.1 mM EDTA, 10% Glycerol, 0.02%

NP-40, 100 mM KCl) and applied to a 15% to 40% linear glycerol gradient (in 0.15 M KCl HEG)

and centrifuged for 6 h at 55,000 rpm. Twenty-two 100µL fractions were removed and Mediator-

containing fractions (¿1.0 MDa) were combined for proteomics analysis. GST-p53AD (residues

1-70) affinity purified Mediator complex-containing fractions were precipitated on ice by adding

20% (w/v) TCA, 0.067mg/mL insulin and 0.067%(w/v) sodium deoxycholate. Precipitated protein

pellets were washed twice with -20◦C acetone and air dried. Proteins were trypsin digested using

a slightly modified filter-aided sample prep (FASP) protocol (Wisniewski et al., 2009). Briefly,

protein pellets were suspended with 4% (v/v) SDS, 0.1M Tris pH 8.5, 10mM TCEP, incubated

30min at ambient temperature to reduce disulfides. Reduced proteins were diluted with 8M Urea,

0.1M Tris pH 8.5 and iodoacetamide was added to 10mM and incubated 30 minutes in total dark-

ness. Reduced and alkylated proteins were then transferred to a Microcon YM-30 (Millipore) spin

concentrator and washed twice with 8M Urea, 0.1M Tris pH 8.5 to remove SDS. Three washes were

performed with 2M urea, 0.1M Tris pH 8.5, then trypsin and 2mM CaCl2 were added and incubated

approximately 2 hours in a 37◦C water bath. Digested peptides were eluted and acidified with 5%

(v/v) formic acid. Peptides were then desalted online and fractionated with a Phenomenex Jupiter

C18 (5µM 300Å, 0.25 x 150mm) custom fabricated column using a two dimensional LC/MS/MS
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method (Agilent 1100). Seven steps of increasing acetonitrile (6, 8, 10, 12, 14, 17, 65% acetonitrile

with 10mM ammonium formate) at a flowrate of 5µL/minute was used to elute peptides for second

dimension analyses with an Acclaim PepMap C18 (3µm 100Å, 0.075 x 150mm) column (Dionex).

Peptides were gradient eluted at 0.2µL/minute from 5 to 25% acetonitrile, 0.1% formic acid in

100 minutes and detected with an Agilent MSD Trap XCT (3D ion trap) mass spectrometer. All

spectra were searched using Mascot v2.2 (Matrix Sciences) against the International Protein Index

(IPI) human database version 3.65 with a maximum of two missed cleavages and a mass tolerance

of 2.0 daltons for MS1 and 0.8 daltons for MS2 spectra. Peptides were accepted above a Mascot

ion score corresponding to a 1% false discovery rate (1% FDR) determined by a separate search of

a reversed IPI v3.65 human database. Peptides were then filtered and protein identifications were

assembled using in-house software as described[174, 201].

Purification of PIC factors for in vitro transcription: TFIIA, TFIIB, TFIID, TFIIE,

TFIIF, TFIIH, Mediator, and pol II were purified as described[70].

In vitro transcription: Chromatinized templates and in vitro transcription assays were

generated and completed as described[127]. Briefly, each activator (GAL4-p53AD or GAL4-VP16AD)

was titrated to yield maximum transcription. While the activator bound the template, the general

transcription factors (GTFs) were mixed in 0.1 M HEMG (10 mM HEPES pH 7.6, 100 mM KCl,

0.1 mM EDTA, 10% glycerol, 5.5 mM MgCl2) to give approximate final concentrations of 40 nM

TFIIA, 10 nM IIB, 0.8 nM TFIID, 10 nM TFIIE, 10 nM TFIIF, 0.5 nM TFIIH and 2 nM pol II. A

non-limiting amount of Mediator was then diluted in a separate salts mix (10 mM HEPES pH 7.6,

100 mM KCl, 2.5% PVA, 2.5% PEG, 7.5 mM MgCl2), along with 400 U of RNAseOUT, about 300

ng PC4 and about 300 ng HMGB1. On ice, the desired concentration of peptide was then added

to the Mediator mix, followed by the GTF mix at a 5:11 ratio. The GTFs, Mediator and peptide

were then incubated at least 5 minutes at 30 ◦C. Then, 15 µL of the mixture was added to each

reaction. PIC assembly proceeded for 15 minutes, then transcription was initiated by adding 5 µL

of a solution containing 5 mM of each NTP. After thirty minutes, reactions were stopped with the

addition of 150 µL Stop Buffer (20 mM EDTA, 200 mM NaCl, 1% SDS, 100 µg/mL Proteinase



177

K, 100 µg/mL glycogen) and incubating at 37 ◦C for 15 minutes. RNA was isolated with 100 µL

phenol/chloroform/isoamyl alcohol (pH 7.7-8.3); 140 µL of the aqueous phase was mixed with 5

µL, 7.5 M ammonium acetate and 5 µL of twenty-fold diluted, radiolabeled (32P) Reverse Tran-

scriptase (RT) probe and transferred to a 500 µL microfuge tube. The RNA was then precipitated

by adding 375 µL, 100% cold ethanol and placing at -20 ◦C for at least an hour.

Radiolabeling of reverse transcription primer: A reverse transcriptase (RT) primer

was synthesized to complement the RNA transcript 85 bases downstream of the transcription start

site. The RT primer was radiolabeled in polynucleotide kinase (PNK) buffer (70 mM Tris-HCl pH

7.6, 10 mM MgCl2, 5 mM DTT) with the addition of about 150 µCi [γ-32P]ATP, 6 U of T4 PNK

and 48 ng of the RT primer in a final volume of 10 µL. The reactions were then incubated at 37 ◦C

for 45 minutes. A glycogen mixture (10 mM Tris pH 7.5, 34 mM EDTA, 1.33 mg/mL glycogen)

was then added to bring the volume to 25 µL, and the reaction was passed through a G-25 column

to remove excess free [γ-32P]ATP. An additional 25 µL of TE buffer (10 mM Tris pH 7.5, 1 mM

EDTA) was added. The radiolabeled primer was then stored at 4 ◦C until needed (up to 1 week).

Primer extension: Reactions were spun down at 14K RPM (Eppendorf 5415) for 20

minutes and the ethanol was removed. Pellets were then briefly dried (speedvac) and resuspended

in 10 µL Annealing Buffer (10 mM Tris-HCl pH 7.8, 1 mM EDTA, 250 mM KCl). The resuspended

RNA was then incubated in a thermocycler as follows: 85 ◦C for 2 minutes, cool to 58 ◦C at

30 sec/degree, 58 ◦C for 10 minutes, 57 ◦C for 20 minutes, 56 ◦C for 20 minutes, 55 ◦C for 10

minutes, and cool to 25 ◦C at 30 seconds/degree. 38 µL of RT mix (20 mM Tris-HCl pH 8.7, 10

mM MgCl2, 0.1 mg/mL actinomycin D, 330 µM of each dNTP, 5 mM DTT, 0.33 U/µL Moloney

Murine Leukemia Virus (MMLV) reverse transcriptase) was then added to the annealing reactions

and allowed to extend for forty-five minutes at 37 ◦C. Reactions were then stopped and precipitated

by adding 300 µL cold ethanol and placed at -20 ◦C for at least an hour.

In vitro transcription analysis by denaturing polyacrylamide gel electrophoresis: The

cDNA reactions were spun down at 14K RPM (Eppendorf 5415) for 25 minutes and the ethanol

was removed from the pellets. After briefly drying pellets (speedvac), cDNA was resuspended
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in 6 µL formamide loading buffer (75% formamide, 4 mM EDTA, 0.1 mg/mL xylene cyanol, 0.1

mg/mL bromophenol blue, 33 mM NaOH), heated for 3 minutes at 90 ◦C and loaded onto a de-

naturing polyacrylamide gel (89 mM Tris base, 89 mM boric acid, 2 mM EDTA, 7 M Urea, 6%

acrylamide/bisacrylamide [19:1]). Gels were run at 35 W for about 1.5 hours, then transferred to

filter paper and dried for 1 hour at 80 ◦C. Gels were then exposed on a phosphorimager screen.

Peptide synthesis reagents: All purchased reagents were used without further purifi-

cation. Standard Fmoc-protected amino acids were purchased from Novabiochem (San Diego,

CA). Fmoc-protected olefinic amino acids, (S)-N-Fmoc-2-(4’- pentenyl)alanine and (R)-N-Fmoc-

2-(7’-octenyl)alanine, were purchased from Okeanos Tech Jiangsu Co., Ltd (Jiangsu, P.R. China).

Rink amide resin, N,N-dimethylformamide (DMF), N-hydroxybenzotriazole (HOBt), and Grubbs

CatalystTM 1st Generation were purchased from Sigma-Aldrich (St. Louis, MO). Trifluoroacetic

acid (TFA) and dichloroethane (DCE) were purchased from Acros Organics (Fair Lawn, NJ).

N,N,N’,N’- tetramethyl-uronium-hexafluoro-phosphate (HBTU) and diisopropylethylamine (DIEA)

were purchased from AmericanBio (Natick, MA). Anhydrous piperazine and 6-chlorobenzotriazole-

1-yloxy-tris-pyrrolidinophosphonium hexafluorophosphate (PyClocK) was purchased from EMD

Millipore (Billerica, MA). Acetic anhydride was purchased from ThermoScientific, Pierce Biotech-

nology (Rockford, IL).

Solid phase peptide synthesis: Peptides were synthesized using standard Fmoc chem-

istry with Rink amide resin on Biotage Initiatior+ Alstra from Biotage (Charlotte, NC) using mi-

crowave acceleration. Fmoc deprotections were performed using 5% piperazine with 0.1 M HOBt

to reduce aspartimide formation in DMF. Coupling reactions were performed using 5 equivalents

of amino acid, 4.9 equivalents of HBTU, 5 equivalents of HOBt, and 10 equivalents of DIEA in

DMF at 75◦C for 5 min. Fmoc-NH-(PEGn)-COOH linkers were coupled as amino acids were. All

arginine residues were double coupled at 50◦C. Olefinic 55 side-chain bearing residues were coupled

using 3 equivalents of amino acid, 3 equivalents of PyClocK, and 6 equivalents of DIEA and stapled

for 2 hours at room temperature PyClocK. Residues following olefinic residues were double cou-

pled using standard coupling procedures. N-terminally capped peptides were generated by treating
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Fmoc-deprotected resin with 100 equivalents acetic anhydride and 100 equivalents DIEA for 10

minutes at room temperature. Following synthesis, resin was washed thoroughly with alternating

DMF (5 mL) and DCM (10 mL) washes before subsequent cyclizing, labeling, and cleavage.

Ring closing olefin metathesis: Peptides containing olefinic amino acids were washed

with DCM (3 x 1 min) and DCE (3 x 1 min) prior to cyclizing on resin using Grubbs Catalyst I

(20 mol % compared to peptide, or 1 equivalent compared to resin) in DCE (4 mL) for 2 h under

N2. The cyclization step was performed twice (Kim et al., 2011). The resin was then washed three

times with DCM (5 mL) before washing with MeOH (5 mL x 5 min) twice to shrink the resin. The

resin was dried under a stream of nitrogen overnight.

Peptide cleavage: After shrinking and drying overnight, the peptide was cleaved from

the resin using a 3 mL solution of trifluoroacetic acid (TFA) (81.5%), thioanisole (5%), phenol

(5%), water (5%), ethanedithiol (EDT) (2.5%) and triisopropylsilane (TIPS) (%) for 2 hours at

RT on an orbital shaker. Cleaved peptides were precipitated in diethyl ether (40 mL, chilled to

-80◦C), pelleted by centrifugation, washed with additional diethyl ether (40 mL, -80◦C), pelleted,

redissolved in a solution of acetonitrile (ACN) and water (15% CAN), frozen, lyophilized to dryness,

and reconstituted in 1 mL dimethyl sulfoxide (DMSO) prior to purification by high-performance

liquid chromatography (HPLC).

Peptide purification by HPLC: Peptide solutions were filtered through nylon syringe

filters (0.45 µm pore size, 4 mm diameter, Thermo Fisher Scientific) prior to HPLC purification.

Peptides were purified using an Agilent 1260 Infinity HPLC system on a reverse phase Triaryl-C18

column (YMC-Triaryl-C18, 150 mm x 10 mm, 5 µm, 12 nm) (YMC America, Inc.) over H2O/ACN

gradients containing 0.1% TFA. Peptides were detected at 214 nm and 280 nm. Peptide purity was

verified using a Shimadzu Analytical ultra-performance liquid chromatography (UPLC) system (ES

Industries, West Berlin; Shimadzu Corporation, Kyoto, Japan) and a C8 reverse phase (Sonoma

C8(2), 3 µm, 100 Å, 2.1 x 100 mm) analytical column. Analytical samples were eluted over a

gradient of 15- 57 60% ACN in water containing 0.1% TFA over 15 min with detection at 214 and

280 nm.
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In vitro binding assays: Starting from 180 µL HeLa nuclear extract (which contains

Mediator), bivalent peptide was added (to 5µM concentration) followed by addition of purified

p53AD (residues 1-70; to 2 µM concentration). A parallel experiment lacked added bivalent peptide.

Each sample was allowed to incubate, with mixing, for 2 hours at 4◦C. Each sample was then

incubated, with mixing, over an anti-MED1 affinity resin (to immunoprecipitate Mediator from

the sample) for 90 minutes at 4◦C. The resin was then washed 4 times with 20 resin volumes with

0.5M KCl HEGN (20 mM HEPES, pH 7.9; 0.1 mM EDTA, 10% glycerol, 0.1% NP-40) and once

with 0.15M KCl HEGN (0.02% NP-40). Material that remained bound to the resin (i.e. Mediator)

was eluted with 1M glycine, pH 2.2 and subsequently probed by western. As an alternate protocol,

HeLa nuclear extract (1 mL) was first incubated over a GST-SREBP affinity column, washed 5

times with 0.5M HEGN, once with 0.15M HEGN, and eluted with 30 mM glutathione buffer, as

described[66]. This material (160 µL), which is enriched in Mediator, was then incubated with

p53AD (residues 1-70; to 2 µM concentration) or GST-VP16AD (residues 411-490) in the presence

or absence of bivalent peptide or its p53AD2 QS mutant (5 µM) at 4◦C for 1 hour. Then each

sample was incubated, with mixing, over an anti-MED1 affinity resin, washed, eluted, and probed

by western as described above.

Western blotting: Protein samples were run on 7 or 9% acrylamide gels and transferred

onto a nitrocellulose membrane for western blotting. Westerns were scanned on an ImageQuant

LAS 4000 series imager, and ImageJ software was used to measure band intensity, which was

normalized to MED15 for quantitation.

Experimental time frame for RNA-seq experiments: In a series of experiments

in SJSA cells, we initially tested whether the bivalent peptide could cause a phenotypic change.

SJSA cells are unusually sensitive to Nutlin-3a[229] and therefore if the p53 response could be

persistently blocked by the bivalent peptide, peptide-treated cells would show enhanced survival

following Nutlin treatment. Starting with a 24-hour Nutlin treatment (10 µM), we observed no

significant effect of the bivalent peptide: similar percentages of cell death were observed in control

vs. peptide-treated populations as analyzed by CellTiter-Glo assay (Promega). Although these
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results could be attributed to poor cellular uptake of the bivalent peptide (see below), we also

suspected that the peptide was active in cells for only a limited time (e.g. before being secreted or

degraded). We next determined that a 6-hour Nutlin treatment time was the shortest that would

still trigger significant SJSA cell death within 24-48 hours. However, we obtained similar results

with 6-hour Nutlin treatment times ( bivalent peptide). Note these experiments did not implement

electroporation to increase peptide uptake. It remains plausible that phenotypic effects would

result from methods that ensured increased bivalent peptide uptake in SJSA cells. We next tested

the prospect of RNA-seq experiments, in hopes that gene expression changes and shorter time

frames would allow an assessment of bivalent peptide effects. Here, we used HCT116 cells, which

show strong transcriptional response to Nutlin[6]. For RNA-Seq experiments, we needed a time

frame long enough to allow accumulation of p53 target gene mRNAs but short enough to enable

maximum activity of the bivalent peptide (e.g. prior to its secretion, export, and/or degradation).

Using RT-qPCR assays, we confirmed that a 3-hour Nutlin treatment was a minimum amount of

time to reliably detect induction of p53 target genes. Parallel RT-qPCR assays confirmed that the

bivalent peptide was blocking activation of p53-target genes in HCT116 cells during this time frame

(e.g. Figure S4C, D3.8).

Electroporation of bivalent peptide into HCT116 cells (RNA-Seq experiment

1): Two 6-well plates (HCT116 cells) were grown to about 80% confluency. Cells were then

trypsinized, washed with PBS, and resuspended in 150 µL Neon Buffer R. The cells were then split

into two groups: No peptide and 10 µM peptide. The cells were then drawn into a 10 µL Neon

pipet tip, electroporated and ejected into 2 mL of McCoy’s 5A media without antibiotic. For each

experiment, two cell electroporation aliquots were added to media containing either 0.1% DMSO

(control) or 10 µM Nutlin-3a (in DMSO, to a final concentration of 0.1%). For wells containing

cells electroporated with peptide, an additional 200 nM peptide was added to the well to allow for

peptide uptake during the experiment. The 6-well plate was then placed back at 37 ◦C for 3 hours.

After 3 hours, cells were scraped from the plates, transferred to a 15 mL conical vial, pelleted at

1,000 x g, and washed in 10 mL phosphate buffered saline (PBS) solution. To isolate the nuclei,
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cells were resuspended in 10 mL lysis buffer (10 mM Tris-HCl, pH 7.4, 2 mM MgCl2, 3 mM CaCl2,

0.5% NP-40, 10% glycerol) and thoroughly mixed. The nuclei were spun down at 1,000xg for 10

minutes, the lysis buffer was removed, and 1 mL of TRIzol was added. The nuclear RNA was

isolated as described in the TRIzol instructions, except an additional phenol/chloroform extraction

and chloroform-only extraction were performed to reduce contaminants. RNA was precipitated and

washed twice with 75% ethanol to further remove contaminants. The RNA was then converted to

cDNA using the High Capacity cDNA kit from Thermo Fisher Scientific.

Electroporation of bivalent peptide into HCT116 cells (RNA-Seq experiment

2): One 15cm plate (HCT116 cells) was grown to about 70% confluency. Cells were then

trypsinized, washed with PBS, and resuspended in 40 µL Neon Buffer R. The cells were then

split into two groups: No peptide and 10 µM peptide. The cells were then drawn into a 10 µL

Neon pipet tip, electroporated and ejected into 2 mL of serum-free McCoy’s 5A media without

antibiotic. Serum-free media was tested based upon prior reports that it may enhance cellular

peptide uptake[39, 46]. For each experiment, two cell electroporation aliquots were added to media

containing 0.1% DMSO (control) or 10 µM Nutlin-3a (in DMSO, to a final concentration of 0.1%).

For wells containing cells electroporated with peptide, an additional 200 nM peptide was added

to the well to allow for peptide uptake during the experiment. The 6-well plate was then placed

back at 37 ◦C for 3 hours. After 3 hours, cells were scraped from the plate, transferred to 2 mL

eppendorf tubes, pelleted at 1,000 x g, and washed in 1 mL cold phosphate buffered saline (PBS)

solution. To isolate the nuclei, cells were resuspended in 0.5 mL lysis buffer (10 mM Tris-HCl, pH

7.4, 2 mM MgCl2, 3 mM CaCl2, 0.5% NP-40, 10% glycerol) and mixed by pipetting up and down

20 times. The nuclei were spun down at 1,000 x g for 10 minutes, the lysis buffer was removed,

and 200 µL of TRIzol was added. The RNA was isolated as described in the TRIzol instructions,

except an additional phenol/chloroform extraction and chloroform-only extraction were performed.

RNA was precipitated and washed twice with 75% ethanol. The RNA was then converted to cDNA

using the High Capacity cDNA kit from Thermo Fisher Scientific.
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RNA-seq data analysis: The RNA-seq data were mapped to hg38 and processed us-

ing a Nextflow pipeline v1.1 (https://github.com/Dowell-Lab/RNAseq-Flow). Batch correction

for experiment 2 was performed in R using the removeBatchEffect function provided by the limma

package[205] from the R programming language. Gene counts were generated using featureCounts[147]

and differential gene expression analysis was performed using DESeq2 [8]. Duplicate transcripts

were filtered for those with the highest RPKM, leaving 28,260 transcripts. RNA-seq was per-

formed on nuclear RNA instead of total RNA to better assess acute transcriptional changes; fur-

thermore, analyses were completed at 3h post-Nutlin instead of longer time points, to reduce

indirect/secondary effects from p53 activation. Because of this strategy, fewer differential mRNA

products were expected (e.g. vs. total RNA analysis at 12h post-Nutlin). Nevertheless, numer-

ous p53 target genes showed differential expression with statistical confidence. A prerank file was

generated in R using the results from the differential analysis results and used in the Broad Insti-

tute’s Gene Set Enrichment Analysis (GSEA 4.0.3) software, using hallmark pathways gene sets

(hall.v7.4)[221]. Heatmaps were generated in Python using seaborn 0.9.0. Other plots (bar plots,

box plots, volcano, moustache) were made with the python package bokeh 1.4.0. Gene traces were

made using pyGenomeTracks 3.5, part of the deeptools suite. Note that for comparisons between

peptide-treated vs. untreated cells in the absence of Nutlin stimulation (e.g. Figure 3E3.3), MTM1

met our significance threshold; however, MT1M was highly expressed in only one replicate of the

DMSO control (R1 RPKM = 8.61; R2 RPKM = 0.63) and MT1M expression in other conditions

(Nutlin, DMSO + peptide, or Nutlin + peptide) was less than 1.0 across all replicates, suggesting

a sampling artifact rather than a true biological difference.

RT-qPCR: Experiments were performed as described[16]; primers used are shown in Table

S6.

ChIP-seq: HCT116 cells were grown to about 80% confluency in one 15cm plate. Cells

were then trypsinized, washed with PBS, and resuspended in 250 µL Neon Buffer R to a concentra-

tion of 2.2 million cells per 100 µL. The cells were then split into either a no peptide or a peptide

group. The peptide group had 10 µM peptide during electroporation and 200 nM peptide on the
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plate during the 3hr incubation. The cells were drawn into a 100 µL Neon pipet tip, electroporated

and ejected into 700 µL of McCoy’s 5A media without antibiotic. This sample was then split, 400

µL (containing 1 million cells) each into 5mL of antibiotic-free media with 0.1% DMSO or with 10

µM Nutlin-3a. The plates containing the four conditions were placed at 37◦C for 3 hours. After this

incubation, the cells were fixed with 1% formaldehyde for 10 min and quenched with 125mM glycine

for 5 min before nuclei isolation in NRO buffer. All buffers were as described[142] unless otherwise

noted. Shearing was performed based on the Covaris truChIP Chromatin Shearing Kit (Covaris:

PN 520237) and sheared in 1 mL of Covaris D3 buffer for 8 min, with a duty factor 5% and peak

power of 75,200 cycles/burst with a Covaris M220 Focused-ultrasonicator. Protein G Dynabeads

(6 µg antibody 25 µL beads per condition. Beads: Invitrogen, #10003D. Antibody: pol II Ser5P

clone 3E8 Millipore Sigma, 04-1572) were loaded with the crosslinked chromatin and allowed to

incubate with shaking at 4◦C overnight ( 18hr) in a final buffer composition of 15 mM Tris-HCl

pH 8, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 5% Glycerol, 0.1% Sodium Deoxycholate,

0.1% SDS and the protease inhibitor cocktail. Note that the buffer composition and antibody:bead

ratio was optimized empirically for this assay, to maximize sample recovery. The beads were then

washed at 4◦C with 2x IP Buffer (15 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM EDTA, 5% Glyc-

erol, 0.1% Sodium Deoxycholate, 1% Triton X-100 and the protease inhibitor cocktail), 2x RIPA

Buffer, 2x LiCl Wash Buffer and 2x TE Salt Buffer. Samples were kept on ice throughout the wash

steps, and all washes were completed in less than 30 minutes; each wash step was 1 min to reduce

sample loss. After washes, the sample was eluted from beads with PK buffer containing 100 µg of

Proteinase K (New England BioLabs: P81075) and incubated at 65◦for 2 hr with periodic vortex-

ing. The eluted sample was removed from the magnetic beads and reverse-crosslinked for 16 hr at

65◦C. DNA was purified by phenol chloroform extraction using Light-5PRIME Phase Lock Tubes

(Quanta Bio: 2302820) based on the manufacturer’s instructions. To increase yield, samples were

ethanol precipitated from glycogen (20µg/sample), sodium acetate (pH 5.2) and 10mM MgCl2 and

kept at -20◦overnight. Isolated DNA was tested by qPCR at the CDKN1A promoter (Forward 5’-

CCAGGAAGGGCGAGGAAA, Reverse 5’- GGGACCGATCCTAGACGAACTT) and the BTG2
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promoter (Forward 5’- AGGGTAACGCTGTCTTGTGG, Reverse 5’- CAGGAGGCTGGAGAG-

GAAG). Subsequently, libraries with approximately 1 ng of input DNA were prepared using the

KAPA Hyper Prep Kit (KAPA Biosystems: KK8502) and sequenced on Illumina NextSeq V2

high output 75-cycle. Adapters were diluted 1:10 before use and amplified for 12-14 cycles before

sequencing.

ChIP-seq data analysis: The ChIP-seq data were mapped to hg38 and processed using

Nextflow pipeline v1.0 (https://github.com/Dowell-Lab/ChIP-Flow). QC metrics showed that bio-

logical replicate 2 was higher quality. The Nutlin + peptide replicate 1 showed low complexity, high

background and high duplication; despite this, we still observed similar trends in Nutlin response

consistent with replicate 2. Due to these complexity and background issues, replicate 1 in the

DMSO + peptide and Nutlin + peptide were not used in subsequent analyses. Due to the nature

of pol II Ser5P ChIP-seq (i.e. Ser5P is enriched at gene 5’-ends), we focused on transcriptional

start sites (TSS) and counted over a 1000bp window at all RefSeq TSSs (NCBI Reference Sequences

for hg38 downloaded from the UCSC track browser on May 18, 2018; n=82,500 annotated tran-

scripts). All counting was performed with bedtools multicov (v 2.28.0) and only the highest RPKM

annotated start site per transcript was retained (n= 28,260). The data were then normalized using

a Signal to Noise ratio (SNR) equivalent to the CHIPIN quantile method as described[193]. To

perform this method, we estimated signal per condition by summing the top 75% expressing TSSs,

excluding 1) p53 target genes and 2) any differentially expressed genes (padj ¡ 0.05) in any of the

6 pairwise comparisons in RNA-seq experiment 1 and RNA-seq experiment 2 (excluded n= 2,820

transcripts, approximately n 18,000 transcripts remained for normalization). To estimate noise,

we randomly shuffled 82,500 1000bp regions with bedtools shuffle and counted using bedtools mul-

ticov (v 2.28.0). These counts were then filtered twice by dropping all zero-read regions and by

keeping only the 10th-90th quantile of reads. We did this to remove 1) any lowly expressed and

highly variable regions and 2) to remove any regions that may overlap with a gene body. This left

approximately 50,000 regions to estimate the noise per condition. The average signal per condition

(reads per region assessed) was then divided by the average noise per condition (reads per region
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assessed). This gave us a SNR factor that was applied to bedgraph files for 1) bigwig conversion

using UCSC kentUtils for visualization or 2) count tables for quantification. ChIP figures were

generated with the same software outlined in the RNA-seq analysis section, seaborn 0.9.0, bokeh

1.4.0 and pyGenomeTracks 3.5.

Quantification and statistical analysis: RNA-seq experiments were completed in bi-

ological replicate (experiment 1) or biological triplicate (experiment 2). Statistical analysis of

RNA-seq data is described in the Method Details. ChIP-seq experiments were completed in bio-

logical replicate; however, single replicates for DMSO + peptide and Nutlin + peptide did not pass

quality control (see Methods). The number of replicates for each in vitro transcription experiment

is indicated in the Figure Legends. Statistical analysis of in vitro transcription data is provided in

Figure Legends and Method Details.

B.3 ∆40p53 Methods

As published in Levandowski et. al. [142].

Cas9 protein purification: Cas9 purification was completed as described[150]

Cas9-RNP formation: sgRNA was formed by adding tracrRNA (IDT cat# 1072533) and

crRNA (TP53 exon 2, positive strand, AGG PAM site, sequence: GATCCACTCACAGTTTCCAT)

in a 1:1 ratio and heated to 95◦then slowly cooled to room temperature over 1 hour. Purified Cas9

was added to sgRNA at a ratio of 1:1.2 and incubated at 37◦C for 15 min, forming Cas-9 RNP.

Cas9 RNP was used at 10 µM concentration within an hour.

Donor plasmid construction: Vector Builder was used to construct the plasmid. The

insert (see 4.5A Fig) was flanked by 1.5kb homology arms, and mCherry was inserted as a se-

lection marker. Insertion sizes were as follows: WTp53: 2820bp, WTp53:WTp53: 4041bp, and

∆40p53:WTp53: 3924bp.

CRISPR-Cas9 genome editing: MCF10A cells were split 24 hours prior to each ex-

periment and grown to approximately 70% confluence on a 15cm plate. Cells were washed with

PBS, followed by trypsinization (4ml per plate) and resuspended in re-suspension media (8 mL



187

DMEM/F12 containing 20% horse serum and 1x pen/strep). 5x105 cells were placed in 1.5mL

eppendorf tubes for transfection with neon transfection system (Invitrogen, #MPK5000). Cells

were re-suspended in resuspension Buffer R (Invitrogen, #MPK1025) with 10 µM Cas9-RNP and

1 µg donor plasmid (WTp53, WTp53:WTp53, or ∆40p53:WTp53). 10 µL Neon pipet tip (In-

vitrogen, #MPK1025), electroporated using the Neon Transfection Kit (1400V, 20 ms width, 2

pulses). Transfected cells were transferred to 2 mL antibiotic free media. Cut location: hg38

chr17:7,676,510. Insertion location: hg38 chr17:7,676,591; after the first ATG for TP53 in exon 2.

Cells were single cell sorted into 96 well plates based on mCherry expression. Clones were then

verified with sequencing, PCR, and western blot.

MCF10A Cell Culture: MCF10a cells cultured in DMEM/F12 (Invitrogen #11330-032)

media containing 5% horse serum (LifeTech #16050-122), 20ng/mL epidermal growth factor EGF

(Peprotech #AF-100-15), 0.5ug/mL Hydrocortisone (Sigma #H0888-1g), 100ng/mL Cholera toxin

(Sigma #C8052-2mg), 10ug/mL insulin (Sigma #I1882-200mg), and 1x Gibco 100x Antibiotic-

Antimycotic (Fisher Sci, 15240062) penicillin-streptomycin.

PCR Verification of insertions at TP53 locus: NEB Phusion polymerase (NEB,

#M0530S) was used to the manufacturer’s specifications. SeqTP53exon2Forward and SeqTP53exon2Reverse

primers were used at 65-68◦C; homozygous knock-in clones had no 500bp product. Product

was sequenced using TP53exon2-Forward primer. Using DBDForward and SeqTP53exon2Reverse

primers at 67.8◦C, a 2542bp band indicated knock-in for at least one allele (either homozygous

or heterozygous clone). A homozygous clone was then verified if SeqTP53exon2Forward and Se-

qTP53exon2Reverse primers at 65-68◦C had no 500bp product. Because mutations in p53 can yield

a survival advantage[171], we periodically re-sequenced the TP53 locus. Primers used were CL802

& CL803 at 65◦C, and DBDForward and DBDReverse were used for sequencing. For sequencing

downstream of insert, we used DBDForward and SeqTP53exon2Reverse at 70◦C. For amplifying

upstream of insert, we used CRISPR3 seq primer and CL803 at 70◦C, and DBDReverse and Se-

qTP53exon2Forward primers were used for sequencing. Primer sequences are listed in Supplement

Table 3.
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Compound Treatments: Nutlin-3a (Selleck, #S8059) stock concentration 10mM, and

treatment concentration 10µM). 5FU (Selleck, #S1209) stock concentration 100mM, and treatment

concentration 375µM. Equivalent volumes of DMSO vehicle were used for controls.

Metabolomics: Cells were harvested after 20 hr treatment with Nutlin-3a (10 µM) or

0.1% DMSO controls, with six biological replicates for each cell line and each condition. Sample

preparation was carried out at Metabolon Inc. (Durham, NC), in a manner similar to a previous

study[49]. Briefly, individual samples were subjected to methanol extraction then split into aliquots

for analysis by ultrahigh-performance liquid chromatography/mass spectrometry (UHPLC/MS).

The global biochemical profiling analysis comprised four unique arms consisting of reverse phase

chromatography, positive ionization methods optimized for hydrophilic compounds (LC/MS Pos

Polar) and hydrophobic compounds (LC/MS Pos Lipid), reverse phase chromatography with neg-

ative ionization conditions (LC/MS Neg), as well as a HILIC chromatography method coupled to

negative ionization (LC/MS Polar)[69]. All of the methods alternated between full scan MS and

data dependent MSn scans. The scan range varied slightly between methods but generally covered

70–1000 m/z. Metabolites were identified by automated comparison of the ion features in the ex-

perimental samples to a reference library of chemical standard entries that included retention time,

molecular weight (m/z), preferred adducts, and in-source fragments as well as associated MS spec-

tra, and curated by visual inspection for quality control using software developed at Metabolon,

Inc. Identification of known chemical entities was based on comparison to metabolomic library

entries of purified standards[60]. A summary of all metabolomics data is shown in Supplemental

Table 4.

Statistical Analysis of metabolomics data: Two types of statistical analyses were

performed: (1) significance tests and (2) classification analysis. Standard statistical analyses were

performed in ArrayStudio on log-transformed data. For analyses not standard in ArrayStudio, the

R program (http://cran.r-project.org/) was used. Following log transformation and imputation of

missing values, if any, with the minimum observed value for each compound, Welch’s two sample

t-Test was used as a significance test to identify biochemicals that differed significantly (p ¡ 0.05)
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between experimental groups. An estimate of the false discovery rate (q-value) was calculated

to take into account the multiple comparisons that normally occur in metabolomic-based studies.

Classification analyses included principal components analysis (PCA), hierarchical clustering, and

random forest. For the scaled intensity graphics, each biochemical in original scale (raw area count)

was rescaled to set the median across all samples and time-points equal to 1.

Cell cycle analysis: WTp53, WTp53:WTp53, or ∆40p53:WTp53 cells were treated with

10µM Nutlin-3a or 375µM 5FU for 20 hours in parallel with DMSO controls, 0.1% and 0.375%

respectively. Propidium Iodide (PI) Flow Cytometry Kit (abcam, ab139418) was used as specified

by manufacturer. Samples were then placed on ice and analyzed with a BS FACSCellesta cell

analyzer. FLOWJO was used to analyze FACS data. All experiments were performed in biological

triplicate.

Immunoflourescence: WTp53, WTp53:WTp53, and ∆40p53:WTp53 were treated with

10µM Nutlin-3a or 0.1% DMSO for 20 hours, collected, and fixed in 66% ethanol for at least 24 hr.

Cells were then incubated with a blocking/permeabilization buffer (3% BSA, 0.1% Triton X-100)

for 1 hr at room temperature. Primary antibody, anti-p21 (CST, 2947) at 1:250 dilution, staining

was carried out overnight at 4 ◦C in the blocking buffer and visualized using secondary antibodies

conjugated to Alexa Fluor 488.

Growth Rate Calculations: To examine how growth rate change over time, cells were

treated with 0.1% DMSO or 10µM Nutlin-3a for 20 hours, passaged 1:10, and given 48 hr to recover

(treatment cycle; 4.8A Fig). Growth rate was calculated by dividing the total cell growth by time

of growth (68 hours). Total cell growth was calculated by counting with Nexcelom Bioscience

Cellometter Auto T4 Bright Field Cell Counter. All experiments were performed in biological

triplicate.

p63 lentiviral knockdown: WTp53, WTp53:WTp53, and ∆40p53:WTp53 cells were

transduced with viral construct targeting p63 (shRNA TRCN0000006506; obtained from Univer-

sity of Colorado Functional Genomics Core) under a constitutive hU6 promoter with puromycin

resistance. Knockdown cells were selected with 48hr treatment of 2µg/mL puromycin followed by
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recovery in standard growth media.

RT-qPCR: WTp53, WTp53:WTp53, ∆40p53:WTp53 cells p63 knockdown, or alternate

p53 cell clones were treated with 10µM Nutlin-3a or DMSO control for 20hr before RNA isolation

using TRizol (Invitrogen, #15596026) as specified by manufacturer. Total RNA was converted

to cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368813)

as specified by manufacturer, followed by a clean-up performed using 0.8X AMPure XP beads

(Beckman). Sybr Select Master Mix (Thermo, 4472908) was added to cDNA at 0.1ng/µL and

amplified per manufacturer instructions. ∆∆CT values were background normalized using a gene

desert. PCR primers are listed in Supplemental Table 3.

RNA-seq: Total RNA was isolated from WTp53, WTp53:WTp53, and ∆40p53:WTp53

cells treated with 10µM Nutlin-3a, 375µM 5FU, or DMSO controls (0.1% and 0.375% respectively)

using TRizol (Invitrogen, #15596026) as specified by manufacturer. 1µg of total RNA with a RIN

number of ≥ 8 was used for RNA-seq library prep. Sample was enriched for mRNA using NEBNext

Poly(A) mRNA Magnetic Isolation Module (E7490) and library was prepared using NEBNext Ultra

II Directional RNA Library Prep Kit from Illumina (E7765).

ChIP-seq: MCF10A cell lines (WTp53, WTp53:WTp53, and ∆40p53:WTp53; 60 x 106

cells per experiment) were treated with 10 µM Nutlin-3a or 0.1% DMSO for 6 hours then crosslinked

with 1% formaldehyde for 10 min at 25◦followed by glycine (0.125 M) quenching for 5 min. Nuclei

were isolated by resuspending cells in NRO buffer (80 µl/million cells; 10 mM Tris-HCl [pH 8], 4

mM MgCl2, 10 mM NaCl, 0.5% [vol/vol] NP-40, 1mM DTT, and the protease inhibitor cocktail

(1mM Benzamidine (Sigma, #B6506-100G), 1mM Sodium Metabisulfite (Sigma, #255556-100G),

0.25mM Phenylmethylsulfonyl Fluoride (American Bioanalytical, #AB01620) 0.012 TIU/mL apro-

tinin (Sigma, #A6106), followed by a 5 min incubation on ice, a low speed spin, and then a final

wash with NRO buffer. The isolated nuclei were prepared for shearing based on the Covaris truChIP

Chromatin Shearing Kit (Covaris: PN 520237) and sheared for 11 min with Covaris M220 Focused-

ultrasonicator. 25µL of Protein G Dynabeads beads (Invitrogen, #10003D) was used per 100µg

chromatin ( 15 million nuclei). Beads were incubated in blocking solution (PBS, 0.5% BSA) then 6
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µg of DO1 p53 antibody (BD Biosciences: BD554293) was conjugated to beads in blocking solution,

nutating at 4◦for 4 hours. Conjugated beads were washed 1x block solution and 1x IP buffer (15

mM Tris-HCl [pH 8], 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 and the protease inhibitor

cocktail). Sheared chromatin was added (100µg chromatin ( 15 million nuclei)) to conjugated beads

in IP buffer and then nutating at 4◦for at least 12 hours. Bound chromatin was washed 3x with

IP buffer, 3x with RIPA buffer (20 mM Tris-HCl [pH 8], 500 mM NaCl, 1 mM EDTA, 1% Triton

X-100 and 0.1% SDS), 2x with LiCl buffer (20 mM Tris-HCl [pH 8], 500 mM LiCl, 1 mM EDTA,

1% sodium deoxycholate and 1% NP-40) and 2x with TE Salt buffer (10 mM Tris-HCl [pH 8], 50

mM NaCl, 1 mM EDTA). Sample was eluted from beads with PK buffer (10 mM Tris-HCl [pH 8],

1 mM EDTA and 1% SDS) containing 100 µg of Proteinase K (New England BioLabs: P81075)

incubated at 50oC, with shaking, for 1-hour then at 65◦for 1-hour. Eluted DNA was transferred to

a new tube and incubated at 65◦for 12 hours to reverse crosslinking. DNA was purified by phenol

chloroform extraction using Light-5PRIME Phase Lock Tubes (Quanta Bio: 2302820) based on

the manufacturer’s instructions. Libraries were prepared using the KAPA Hyper Prep Kit (KAPA

Biosystems: KK8502) and sequenced on Illumina NextSeq V2 high output 75-cycle.

PRO-seq nuclei preparation: WTp53, WTp53:WTp53, ∆40p53:WTp53, or p53-null

MCF10A cells were seeded on three 15cm dishes (1x107 cells per dish) for each treatment 24

hr prior to the experiments ( 70% confluency at the time of the experiment). Cells were treated

simultaneously with 10µM Nutlin-3a or 0.1% DMSO for 3 hours. After treatment, cells were washed

3x with ice cold PBS, and then treated with 10 ml (per 15 cm plate) ice-cold lysis buffer (10 mM

Tris–HCl pH 7.4, 2 mM MgCl2, 3 mM CaCl2, 0.5% NP-40, 10% glycerol, 1 mM DTT, 1x Protease

Inhibitors (1mM Benzamidine (Sigma B6506), 1mM Sodium Metabisulfite (Sigma 255556), 0.25mM

Phenylmethylsulfonyl Fluoride (American Bioanalytical AB01620), and 4U/mL SUPERase-In).

Cells were centrifuged with a fixed-angle rotor at 1000g for 15 min at 4◦C. Supernatant was removed

and pellet was resuspended in 1.5 mL lysis buffer to a homogenous mixture by pipetting 20-30X

before adding another 8.5 mL lysis buffer. Suspension was centrifuged with a fixed-angle rotor at

1000g for 15 min at 4◦C. Supernatant was removed and pellet was resuspended in 1 mL of lysis
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buffer and transferred to a 1.7 mL pre-lubricated tube (Costar cat. No. 3207). Suspensions were

then pelleted in a microcentrifuge at 1000g for 5 min at 4◦C. Next, supernatant was removed and

pellets were resuspended in 500 µL of freezing buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mM

MgCl2, 0.1 mM EDTA, 4U/ml SUPERase-In). Nuclei were centrifuged 2000g for 2 min at 4◦C.

Pellets were resuspended in 100 µL freezing buffer. To determine concentration, nuclei were counted

from 1 µL of suspension and freezing buffer was added to generate 100 µL aliquots of 1e7 nuclei.

Aliquots were flash frozen in liquid nitrogen and stored at -80◦C.

PRO-seq Nuclear run-on and RNA preparation: Nuclear run-on experiments were

performed with biological duplicates as described[160] with the following modifications: the final

concentration of non-biotinylated CTP was raised from 0.25 µM to 25 µM, a clean-up and size

selection was performed using 1X AMPure XP beads (1:1 ratio) (Beckman) prior to test PCR and

final PCR amplification, and the final library clean-up and size selection was accomplished using

1X AMPure XP beads (1:1 ratio) (Beckman).

Sequencing: Sequencing of RNA-seq, ChIP-seq, and PRO-Seq libraries was performed

at the BioFrontiers Sequencing Facility (UC-Boulder). Single-end fragment libraries (75 bp) were

sequenced on the Illumina NextSeq 500 platform (RTA version: 2.4.11, Instrument ID: NB501447),

demultiplexed and converted BCL to fastq format using bcl2fastq (bcl2fastq v2.20.0.422); se-

quencing data quality was assessed using FASTQC (v0.11.5) ( https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, https://www.bioinformatics.

babraham.ac.uk/projects/fastq_screen/). Trimming and filtering of low-quality reads was per-

formed using BBDUK from BBTools (v37.99) (https://www.osti.gov/servlets/purl/1241166) and

FASTQ-MCF from EAUtils (v1.05)[15]. Alignment to the human reference genome (hg38) was car-

ried out using Hisat2 (v2.1.0)[124] in unpaired, no-spliced-alignment mode with an hg38 index, and

alignments were sorted and filtered for mapping quality (MAPQ¿10) using Samtools (v1.5)[145].

RNA-seq Computational Analysis: The RNA-seq data was processed using a Nextflow

pipeline v1.1 (https://github.com/Dowell-Lab/RNAseq-Flow). A full pipeline report of the run as

well as a quality control report generated by MultiQC (v. 1.7), including trimming, mapping,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
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coverage, splicing, and complexity metrics are included in Supplemental Table 5. Gene counts were

generated using featureCounts[147] and differential gene expression analysis was performed using

DESeq2[8]. Duplicate genes were filtered and those with the highest FPKM were kept for analysis.

Qiagen Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA 4.03)[221]

were used for identification of activated and inhibited pathways, and upstream regulators based on

expression changes.

ChIP-seq Computational Analysis: All ChIP-seq data was processed (mapped and

quality checked) using a Nextflow pipeline, ChIP-Flow v1.0 (https://github.com/Dowell-Lab/ChIP-

Flow). A full pipeline report of the run as well as a quality control report generated by MultiQC (v.

1.7), including trimming, mapping, coverage, and complexity metrics are included in Supplemental

Table 6. Peak calls were generated using MACS2 narrowPeak. The q-value default cutoff was also

decreased from the default of 0.05 to 1e-5. Blacklisted regions (those having artificially high signal

and read mapping, http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human)

were removed using BEDTools intersect[198]. PyGenomeTracks [200] was used to generate track

images.

Data processing, visualization and identification of eRNAs: Two biological repli-

cates for each treatment (DMSO/Nutlin-3a) were generated for each of the three cell lines were

processed using a Nextflow pipeline for nascent data (https://doi.org/10.5281/zenodo.2641755). A

full pipeline report of the run as well as a quality control report generated by MultiQC (v. 1.7),

including trimming, mapping, coverage, and complexity metrics, is included in Supplemental Table

7. PyGenomeTracks [200] was used to generate track images. Tfit was used to identify regions

with bidirectional transcription[18]. Note that in Nutlin-treated ∆40p53:WTp53 cells, 86 eRNAs

were identified with a p-value ≤ 0.01; after removal of all repetitive regions, 25 eRNAs remained.

Transcription Factor Enrichment Analysis (TFEA) was used to identify changes in bidirectional

transcription and map to underlying TF sequence motifs to infer changes in TF activity[207].

Differential transcription analysis of genes and bidirectionals/enhancers (PRO-

seq): Using the RefSeq: NCBI Reference Sequences for hg38, including both NM and NR acces-



194

sion types (downloaded from the UCSC track browser on May 18, 2018), counts were calculated for

each sorted BAM file using multiBamCov in the BEDTools suite (v. 2.25.0). Genes (NM accession

type) and lncRNAs (NR accession type) were then filtered such that only the isoform with the

highest number of reads per annotated length was kept in order to minimize duplicate samples

being included in differential transcription analysis. DESeq2 (v. 1.20.0, Bioconductor release v.

3.7) was then used to determine differentially transcribed genes between the different treatments

both within and between timepoints. A prerank file was generated using the results from the dif-

ferential analysis from each pairwise comparison and used in differential pathway analysis using

GSEA 4.0.3, using hallmark pathways gene sets. Qiagen Ingenuity Pathway Analysis (IPA, v7.2)

was used for identification of activated and inhibited pathways based on transcriptional changes.

For bidirectional/enhancer comparisons, all bidirectional prediction Tfit calls were merged using

mumerge software (merge component of TFEA) to generate an annotation file. Counts were then

calculated for each sample using multicov from the BEDTools suite (v. 2.28.0)[198] and DESeq2

[8] was used to calculate differentially transcribed bidirectionals. Transcription factor enrichment

analysis (TFEA) was used to assess p53 activation based on eRNA expression[207].

Additional cell line validation: Cell lines were internally validated by mapping PRO-

seq reads to the p53 construct as a mini “genome” using Hisat2 (v2.1.0)[124] and alignments were

sorted using Samtools (v1.5)[145]. Counts were then calculated for each sample using multicov

from the BEDTools suite (v. 2.28.0)[198] and regions were compared for their read density over

TAD1 against to the central region (TAD2, DBD and C-terminal region) of p53.

Quantification and statistical analysis: PRO-seq and RNA-seq experiments were

completed in biological replicate. ChIP-seq experiments were completed with biological trip-

licates. Metabolomics experiments were completed with six biological replicates. Statistical analysis

of sequencing data and metabolomics data is provided in Method Details.
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B.4 OV90 CDK7i Methods

OV90 cell culture and treatment details: Roughly 7 million early-passage wild-type

OV90 cells were grown in MCDB 105 media 1:1 with Medium 199 and supplemented with 15% FBS

and 1% Pen-strep per ATCC guidelines. Cells were then treated in T-75 flasks with either 50nM

SY5609, 50nM SY5102, 2.5uM 3MB-PP1 (OV90 CDK7as cells) or equivalent DMSO (0.005%) for

30min at 37◦C and were either harvested or heat shocked at 42◦C for a set time described in Figure

A.1. Some experiments involved a recovery for 1hr at 37◦C[45].

RNA-seq library preparation and sequencing: After conclusion of the treatment

scheme, cells were harvested by washing with cold D-PBS, scraped in D-PBS into 15mL conical

tubes, and centrifuged at 1000rpm for 5min 4◦C. RNA was extracted with TRIzol according to the

manufacturer’s instructions. DNaseI digestion was then performed with the RNeasy kit (Qiagen)

using the on-column protocol[203]. RNA was eluted in 50L RNase-free water and samples analyzed

by Qubit and TapeStation. Samples were concentrated, 300-400ng/µL, and of high quality, RIN

values ¿8.6. For deep mRNA sequencing to asses splicing alterations, poly(A) selection was per-

formed with the KAPA mRNA HyperPrep Kit with 1µg of RNA containing 1:100 diluted ERCC

RNA spike-in mix (Invitrogen Thermo Fisher). Samples were then sequenced on the NovaSEQ6000,

using a paired-end 150bp cycle (2x150)[203].

RNA-seq computational analysis: The RNA-seq data was processed using a Nextflow

pipeline (https://github.com/Dowell-Lab/RNAseq-Flow). Gene counts were generated using featureCounts[147]

and differential gene expression analysis was performed using DESeq2[8, 155]. Duplicate coding

genes were filtered first by transcriptional start site isoforms identified by PRO-seq then by the

highest FPKM of remaining possible isoforms. A prerank file was generated using the results from

the differential analysis from each pairwise comparison and used in differential pathway analysis

using GSEA 4.0.3[221], using go biological processes pathways gene set.

PRO-seq nuclei preparation and library preparation: PRO-seq libraries were pre-

pared as described in Levandowski et. al.[142]. Briefly, after treatment, cells were washed with ice
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cold PBS, and then treated with ice-cold lysis buffer. The nuclei were isolated and resuspended in

500 µL of freezing buffer. Nuclei were centrifuged 2000g for 2 min at 4◦C. Pellets were resuspended

in 100 µL freezing buffer. To determine concentration, nuclei were counted from 1 µL of suspension

and freezing buffer was added to generate 100 µL aliquots of 1e7 nuclei. A single aliquot of nuclei

per condition was used to perform a nuclear run-on as described in Mahat et. al. 2016, with

the modifications discussed in Levandowski et. al. 2021[142, 160]. Sequencing was performed at

University of Nevada Reno sequencing core on the Illumina NextSeq 2000, using a single-end 80bp

cycle.

PRO-seq computational analysis: The PRO-seq data was processed using a Nextflow

pipeline (https://doi.org/10.17605/OSF.IO/NDHJ2). Gene-centric analyses were performed by

counting over refseq h38 regions using bedtools multicov in the BEDTools suite (v. 2.25.0). All

count data was normalized using the virtual spike-in method[158]. A single isoform for each coding

transcript was selected by first the highest transcriptional start site signal, then by highest FPKM

over the gene body. Differential expression results were generated by DESeq2[8, 155]. A prerank

file was generated using the DESeq2 results from each pairwise comparison and used in GSEA

4.0.3[221], using go biological processes pathways gene set.

Tfit was used to identify regions with bidirectional transcription[18]. These regions were then

merged using muMerge to generate a single bidirectional master file (Fig. A.13)[207]. The master

file was used to count coverage over all bidirectionals using bedtools multicov and was normalized

by the virtual spike-in[158]. These regions were then assessed for differential expression using

DESeq2[8]. The differential expression results were used to build the ranked lists for TFEA input,

allowing for the virtual spike-in to be accounted for in transcription factor enrichment analyses.

Initial runs for TFEA were performed to extract non-corrected E-scores. All non-corrected E-scores

for all relevant comparisons in this study (n=9, DMSO heat shock time course, SY5609 heat shock

time course and SY5609 versus DMSO across all heat shock) were corrected in one linear fit, equally

across all conditions (Fig. A.18). TF Profiling was performed using annotated peaks defined by

the muMerge master file, filtered for only regions that contained signal in DMSO 0min heat shock

https://doi.org/10.17605/OSF.IO/NDHJ2
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replicate 1 or replicate 2. PyGenomeTracks [200] was used to generate track images.
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