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ABSTRACT

Transcriptional regulation is the complex system behavior arising from the interaction

of numerous regulators with the DNA. The DNA sequence contains the information for this

complex system to produce precise gene expression at specific times and cellular locations.

Despite the tremendous progress in understanding the behaviors of individual components,

we are unable to predict transcriptional behavior from the signal encoded in a DNA se-

quence.

To better understand transcriptional regulation, we need to construct interpretable,

quantitative models of the regulation processes derived from fundamental biological prin-

ciples. Models need to capture the mechanisms of the individual components and the

interactions between components, including the transcriptional machinery itself. Models

should be capable of capturing the regulation signal found in any DNA sequence and allow

interrogation of the interactions that lead to transcription events.

I have developed modeling frameworks that capture the behavior of individual com-

ponents, the competition between components for interactions with the DNA, and more

importantly, the dynamics of regulatory events occurring within individual cells. I can con-

struct biologically realistic computational models that capture the inherent stochasticity

and dynamics of regulatory interactions in simulations and visualize the results of configu-

ration changes occurring in the components bound to the DNA.

The form and content of this abstract are approved. I recommend its publication.

Approved: Robin D. Dowell
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CHAPTER I

INTRODUCTION

Transcriptional regulation is the system behavior arising from the interaction of numer-

ous regulators with DNA. This complex system produces precise gene expression at specific

times and locations. Experimental studies of gene expression have unlocked the function

of many proteins involved in regulating the transcription process (Bai et al., 2011; Bradley

et al., 2010; Darzacq et al., 2007; Farnham, 2009; Hahn and Young, 2011; Lickwar et al.,

2012b; Mack et al., 2012; Mirny, 2010; Palmer et al., 2011; Segal et al., 2006; Venters et al.,

2011). New experimental techniques are being developed to understand transcriptional

regulation at unprecedented temporal and molecular detail, ultimately even at single-cell

resolution (Galburt et al., 2009; Larson et al., 2011; Levsky et al., 2002; Taniguchi et al.,

2010). Yet much is still to be learned. There is growing evidence that transcription emerges

not solely from the individual components, but rather from the collective behavior (includ-

ing competition and cooperation) between the components (Larson et al., 2011; Sanchez

et al., 2011; Segal and Widom, 2009a; Struhl and Segal, 2013; To and Maheshri, 2010; Was-

son and Hartemink, 2009; Zeevi et al., 2011). Three major classes of protein regulators,

transcription factors, nucleosomes, and the transcriptional machinery, interact with DNA

in both a competitive and cooperative fashion. DNA undergoes millions of interactions

every second, constantly changing the configuration of the molecular components bound.

It is the stochastic, temporal, and spatial interactions of these regulators that controls the

transcription process in each individual cell.

Encapsulating our understanding of these interactions into a computational model is

integral to understanding transcriptional regulation (Lander, 2010). Models allow us to

explore a system, create testable hypotheses, and identify when key details are missing

in our current knowledge. To date, most modeling frameworks have either focused on

the detailed molecular behavior of a single specific regulator or the interaction of a small

subset of regulatory components (Barnes et al., 2011; Cantone et al., 2009; Greive et al.,
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2011; Kim and Gelenbe, 2012; Lubliner and Segal, 2009; Ribeiro, 2010; Segal et al., 2006).

Yet, few models have approached the problem of simultaneously capturing the behavior

of all three major regulators. In part, this is because most models either focus on the

positional information of each component, the binding locations along the DNA (Segal

et al., 2008; Wasson and Hartemink, 2009), or the temporal behavior of their inherent

dynamics (Ribeiro et al., 2009; Roussel and Zhu, 2006). Integrating both the positional

information and temporal information often leads to computationally expensive models.

As experimental techniques continue to improve, modeling approaches must also evolve

to represent increasingly realistic molecular details while still remaining computationally

tractable. We need new methods to construct biologically realistic computational models

that capture not only the positional binding of transcription factors and nucleosomes, but

also the underlying temporal dynamics, such as the behavior of transcriptional machinery

during initiation and elongation.

Therefore, I have developed a new modeling framework that can automatically generate

rule sets describing the possible molecular interactions implied by a given DNA molecule,

extended a current state-of-the-art positional method to capture some dynamics of nucleo-

some formation, and explored methods for visualizing the stochastic and dynamic behavior

of the complex system known as transcriptional regulation.

1.1 Motivation

1.1.1 FLO11 Transcriptional Regulation

The motivation for this work derived from studies of the regulation of transcriptional

switches. These are regions in the genome with complex regulation that depend not only

on the individual components, but also the complex cooperation and competition between

multiple independent components. For example, in yeast (Saccharomyces cerevisiae), reg-

ulation of the well studied Flo11 transcriptional switch (Bumgarner et al., 2012; Hongay

et al., 2006) is dependent not only on transcription factor binding, but also the transcrip-

tion process itself. The regulation mechanisms used in these switches are also found in

higher eukaryotes, including human, and the same mechanisms may apply to the recently
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discovered enhancing RNAs (also known as eRNA) that have been shown to regulate the

genes in which they reside (Kornienko et al., 2013).

The transcriptional regulation of the FLO11 gene is very complex, but that complexity

is gained through a collection of simpler regulatory mechanisms (Bumgarner et al., 2012).

FLO11 is activated by transcription factors binding in its promoter region (Figure 1.1-A).

However, access to the FLO11 promoter DNA is restricted by nucleosome formation at the

specific TF binding sites. Nucleosome formation thereby suppresses transcription (Figure

1.1-B). The nucleosome binding pattern in this region is maintained by the transcription

of a non-coding RNA, Interfering Crick RNA (ICR1), across this region shown in Figure

1.1-C. Presumably factors bound to the DNA are removed as the transcriptional machinery

traverses the DNA, which leads to an environment where all the factors compete to rebind

after the machinery moves on. In this competition, nucleosomes are the most likely structure

to form as the concentration of histone proteins is very high compared to other factors. To

allow expression of the Flo11 transcript, a second non-coding transcript, Promoting Watson

RNA (PWR1), must be transcribed to interfere with ICR1 transcription through transcrip-

tional interference (Figure 1.1-D). Transcription of PWR1 prohibits ICR1 transcription

through the promoter region of FLO11, thereby allowing key transcription factors to even-

tually access the promoter DNA of FLO11 and initiate transcription. To further complicate

matters, the PWR1 transcript is regulated by the competition between two transcription

factors (SFL1 and FLO8) that bind in the PWR1 promoter. Stochastic interactions deter-

mine which transcription factor binds first, setting the local configuration, which determines

if PWR1 transcription occurs and ultimately determines when transcription of FLO11 can

occur. (Figures 1.1-E & F).

Experimental data shows that either PWR1 or ICR1 is being transcribed in a cell, but

not both (Bumgarner et al., 2012). Once a cell is in one of these states of expression, it

stays in that state until a seemingly random event causes the transcription to switch to the

other state. The competition for the promoter of PWR1 is dependent on the concentration

of the transcription factors and the stochastic behavior of their binding. The experimental
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c)

d)

e)

f)

Figure 1.1: Regulation of the FLO11 gene. a) FLO11 is activated by binding of
transcription factors. The red triangle represents a transcription factor bound on the DNA
and the blue oval shows DNA bound within a nucleosome. The green teardrop represents
transcriptional machinery directionally processing along the DNA strand it is touching. b)
Repression occurs when nucleosomes block access to a TF binding site. The red rectangle
representing the transcription factor binding site is occluded by nucleosome formation. c)
The repressing nucleosome configuration is maintained by the transcription of a non-coding
transcript (ICR1) which is constitutively on at low levels and therefore inhibits FLO11
transcription. d) To allow transcription of FLO11, the non-coding IRC1 must be inhib-
ited. This is accomplished by transcription of a second non-coding transcript PWR1 which
interferes with ICR1 transcription through transcriptional interference. e) Transcription
of PWR1 is regulated by competition between two factors. When one factor binds it will
activate PWR1 which interferes with ICR1 allowing FLO11 to be activated. The two tran-
scription factors, shown as a parallelogram and pentagram, compete for the overlapping
binding sites. When the pentagram binds, occluding the parallelogram, PWR1 transcrip-
tion is activated. f) When the other factor binds in the promoter of PRW1, it inhibits the
transcription of PWR1, allowing ICR1 to transcribe and keep FLO11 inhibited.
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data shows, in rich media, that the FLO11 repressing state is most likely. When the

activating factor out competes inhibiting factor at the PWR1 promoter, the cell switches to

transcribing PWR1 and will stay in that state until unbinding of the activation factor. ICR1

is always being transcribed and when the transcriptional machinery escapes the interference

of PWR1, the activating factors in the PWR1 promoter will be unbound. At that time,

the competition of the transcription factors at the PWR1 promoter will determine the next

configuration and the state of the transcriptional switch.

These type of switches are difficult to study via molecular biological experimentation

as their state fluctuates seemingly at random. Most experimental techniques measure the

behavior of a population of cells, not the behavior of an individual cell. At any specific time

point, some cells within a population express the ICR1 ncRNA and a separate set of cells

are expressing the PWR1 ncRNA and FLO11. Unfortunately, the switching is stochastic,

meaning even if the cells in one state were sorted, by the time the segregation is completed,

many of the cells will have switched states (private comm with R. Dowell). This provides

an environment where computational models may be the only reasonable method to explore

the systems behavior of regulation.

Traditionally, transcriptional regulation models have captured the steady-state behavior

of competition and cooperation in cell populations (Figures 1.1 A,B,E, & F) using hidden

Markov models (HMM) (Segal et al., 2006; Wasson and Hartemink, 2009) or Ordinary

Differential Equations (ODE) (Sanchez et al., 2013). The mechanism of transcriptional

interference (Figure 1.1-D) has been described with ODEs (Sneppen et al., 2005) and

the behavior of the transcriptional machinery has been modeled using rule based systems

(Ribeiro et al., 2006). These methods have been successful in describing the regulatory

behavior within a population of cells. However, they are not designed to capture all the

spatial and temporal behavior of an individual cell at the FLO11 locus. The competition

of transcription factors and nucleosomes for DNA is captured by these methods, but the

transcriptional machinery passing through the same regions will alter the probabilities of

remaining in that state. This dynamic change in the transitions cannot be captured easily in
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these methods. The transcriptional interference that is required by this switch is temporally

dependent on the locations of the transcriptional machinery.

To explore and understand the regulation mechanisms of these switches, a new com-

putational modeling method must be developed. These new models must capture the

independent behavior of each component, as well as capture the combined behavior of the

whole system. The system behavior will be compared to the experimental data to under-

stand which behaviors of the individual components are required to achieve the system

level regulation. Understanding this regulation requires a systems modeling method that

captures not only the spatial aspects, but also the temporal aspects of the system because

the temporal and spatial events can have a profound effect on the other positions of the

DNA and effect the behavior of the entire system, as seen in the FLO11 example.

1.1.2 Why Model?

Knowledge does not imply understanding. Often we have data that is confusing or

is contrary to the data that has been collected before. As experimentation techniques

continue to collect more, better, and higher resolution data, our ability to understand this

new complex data often becomes increasingly more difficult. Yet, we can use all the data

as facts about the behavior of the system.

How can we create understanding of all this factual knowledge? When new concepts

are being discovered, in our minds we implicitly create simplified models of the complex

processes and intuitively analyze the data to “see if it fits” that model. When new data does

not conform to the expected results, it will often lead to new ideas and a new understanding

of the behavior of the system. Computational models explicitly define the assumptions and

behavior the model components so we can communicate the models’ behaviors, quantify

how well the data matches the model, allow colleagues to replicate the results, and explore

the range of component behaviors or parameters to identify the robustness or sensitivity of

model perturbations (Epstein, 2008).

When enough knowledge has been collected, we can specify a model accurately enough

to predict the behavior of the system. While many people think all models must be able
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to accurately predict behavior to be useful, these models become available only after we

deeply understand the system and have collected the relevant knowledge. As new concepts

are being explored for the first time, most of the relevant data is not available and we create

models that simplify the complex processes to match the data acquired thus far.

There are many reasons to build models even when accurate prediction is not possible.

Models can be used to explain behavior, guide data collection, illuminate core dynamics

between components, demonstrate trade offs between modelling choices, and educate both

the non-expert researcher and the general public (Epstein, 2008).

1.1.2.1 Explain the Behavior vs Predict

Models can be used to explain how a behavior arises from the components and their

interactions. The models can be used to learn and understand the behavior without be-

ing able to predict when those interactions will occur. The standard example is that we

understand the reasons that earthquakes occur (plate tectonics), but we are still unable to

predict when they will occur. The same is true in biology, we understand and model how

the flu virus works, but we cannot accurately predict the strain that will affect us this year.

Most of what we learn is via models, which help us understand, even when it will not allow

us to accurately predict the future.

1.1.2.2 Guide Data Collection

Developing models is an iterative process of collecting data, formation of a model, run-

ning that model, and comparing the results to the collected data. When creating a new

model, we may identify the knowledge that we are missing and can guide the direction of

the next round of experimentation. An example of model guiding data collection can be

seen in the search for Higgs boson. For many years a model in modern particle physics envi-

sioned a previously unseen particle. The Higgs particle is an elementary subatomic particle

hypothesized by a group of theoretical physicists. The model was continually improved

over the years, driven by both theoretical and experimental particle physicists working to-

gether. The Higgs boson was recently discovered only because there was an active billion

dollar search for the particle. Another example of models guiding the experimentation is
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the bending of light by gravitation that was proposed by the general relativity model, which

also was later confirmed by experimentation.

1.1.2.3 Illuminate Core Dynamics Between Components

Models are always an abstraction of the real underlying system, but because they focus

on the essential features and hide the unnecessary details for understanding the system

behavior, they are useful. The famous quote by George Box, “essentially, all models are

wrong, but some are useful,” shows that even when a model is inherently wrong, it can

still be used to understand how the different components interact. The fact that a model

does not match the data is in itself helpful for guiding the experimental data that needs to

be collected. In silico experiments allow the behavior of components to be manipulated in

order to search the alternative possibilities for thresholds, robustness, and sensitivity of the

model and its components.

1.1.2.4 Demonstrate Trade-offs Between Model or Model Choices

Competing models can be compared to see which model performs better. We can use

the areas where the two models differ to understand why and maybe find a third model

that combines the best of both competitors.

1.1.2.5 Educating Expert and Non-expert Alike

The actual systems being modeled are too complex for most people to comprehend

without extensive study. However, a model that is not technically correct can be used to

convey the concepts to the non-expert researcher or to the general public. How many of

us actually understand the General Relativity Theory or the Standard Model in theoretical

physics? Yet, when given a simpler model of the concepts, we are able to obtain a basic

understanding of the behavior it is describing.

1.2 Dissertation Organization

In this work, I describe the modeling perspective and methods (Chapter II), the design,

implementation, and validation of a modeling framework (Chapter III), an extension to a

current state-of-the-art hidden Markov model to include dynamics of nucleosome formation
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(Chapter IV), and visualization of the spatial and temporal results of the framework’s

models (Chapter V).

The rest of this chapter provides an overview of all the contributions in this work (1.3), a

set of assumptions and limitations for this work (1.4), and a section describing the biological

concepts used throughout this work. (1.5). Anyone familiar with the mechanistic concepts

of transcription can safely ignore this background section as I quickly introduce the relevant

concepts in each chapter.

1.3 Contributions

To address the problem of modeling the systems behavior of transcriptional regulation

at a single cell resolution, I needed to address two main issues: Building models and inter-

preting the results of model simulations or analysis. The first issue addresses how to create

a model that could capture the spatial and temporal behavior of a system, while remaining

flexible enough to capture the behavior for any arbitrary DNA sequence. To this end, I have

created a modeling framework that captures these features within a biochemically inspired,

rule-based description of individual components and combines them into a single simulation

model. I have also explored an alternative approach, namely, adding some of the dynamics

inherent in nucleosome formation to a state-of-the-art positional model.

The second issue focuses on how to convey information between the computer and the

human user. This includes both the specification of component behavior or kinetics param-

eters, as well as conveying the results of model simulations or analysis. I have designed

a method to visualize specific component interactions with the modeling framework as a

graph or more specifically, as a Petri net. I have created a visualization of the DNA config-

uration at each time point within a simulation and produced animations from those results.

Finally, I have also directed the creation of a short video to introduce the dynamic and

stochastic nature of transcriptional regulation that can be used in undergraduate courses.

Below I have listed the contributions for all chapters of this manuscript. These contri-

butions are reiterated within their individual chapters to maintain each chapter’s autonomy.
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1.3.1 Contributions of Modeling Framework

Part of this work is currently in the review process for IEEE Transactions on Compu-

tational Biology and Bioinformatics as “A modeling framework for generation of temporal

and positional simulations.” Additionally, this work comprises Aim 1 of a National Science

Foundation grant (ABI 1262410) on which I was a co-author.

• I created a modeling framework to automatically generate a model com-

prised of a collection of biochemical based rules describing the individual

behavior of each model components for any given sequence of DNA. The

generated models capture the details of interactions at nucleotide resolution, which

allows the behavior of individual cells to be captured. The models can describe both

steady state processes, such as transcription factor binding, and dynamic processes,

such as the transcriptional machinery moving along the DNA. These generated models

capture both the spatial and temporal behavior of the system being modeled.

• My framework allows the models to not only capture the population av-

eraged steady-state behavior, but also capture the dynamic behavior of

individual components, as well as the emergent behavior arising from the

components working together in a coordinated system. My framework focuses

on modeling at the nucleotide level within single cells. Instead of providing a single

population averaged result as current modeling methods produce, I can capture the

progression over time through different configurations of factors bound to the DNA

in a single cell.

• The interactions between components can be specified using spatially ab-

stract descriptions. The abstract descriptions of each component interaction is

described independently of the actual DNA sequence or positions. Each interaction

description is applied to each position of the given DNA sequence to generate the

model. Details of the interaction, such as an interaction rate, can be tied to a func-

tion based on the local sequence at each position. Each abstract interaction can be

described using a graphical form.
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• The DNA sequence is not a single molecule or component, but many in-

terdependent nucleotide components. The framework is designed to consider

each individual nucleotide as its own component. Each nucleotide is not completely

independent, as interactions that occur at a neighboring nucleotide have a large effect

on the behavior on other nearby nucleotides. However, the extent of the effects are

limited in scope at any specific nucleotide position and therefore makes the simulation

of interactions along a large DNA segment trackable.

1.3.2 Contributions of Two-state Nucleosome Model

A Manuscript covering part of this work is currently in preparation: “Dynamic Nucleo-

somes in a Steady State Model”. This work was supported by a Chateaubriand Fellowship

awarded to David Knox in 2012 for working collaboratively with Laboratoire Joliot Curie,

Ecole Normale Superieure de Lyon, Lyon France.

• Extended a state-of-the-art positional model to include some of the dy-

namics of nucleosome formation by adding multiple nucleosome states and

transitions. The classical nucleosome is formed by eight histone proteins stably

binding to ~147 nucleotides of DNA. However, there are additional stable interme-

diate formations (Luger et al., 2012). Pairs of histones H3 and H4 are bound first

to form a core nucleosome and then pairs of other histones (H2A and H2B) combine

with the core to capture the additional DNA of entry and exit arms and form a stable

canonical nucleosome. I have enhanced a state-of-the-art positional model from using

a single nucleosome state to one including both a core and full nucleosome state.

• The two state nucleosome model correlates with the experimental nucle-

osome occupancy better than the single state nucleosome model across

whole chromosomes. The enhanced model showed an increased correlation of

genome wide nucleosome occupancy values between simulated and experimental data.
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1.3.3 Contributions of Visualization

This work comprises part of Aim 2 in a National Science Foundation grant (ABI

1262410) on which I was a co-author. The video was entered into National Science Foun-

dations’ Visualization Contest in 2014 (www.nsf.gov/news/special reports/scivis). The vi-

sualization of proteome conservation was published in BMC Genomics: Rokicki, J., Knox,

D., Dowell, R. D., and Copley, S. D. (2014). “CodaChrome: a tool for the visualization

of proteome conservation across all fully sequenced bacterial genomes” (doi:10.1186/1471-

2164-15-65).

• Produced a short introductory video to describe the stochastic nature

of the transcription process and the dynamics of the transcription pro-

cess to be used as teaching material for undergraduate introductory bi-

ology courses. There are two concepts that this video uniquely addresses: the

stochastic nature of the transcription process and the dynamic behavior of the tran-

scriptional machinery that contributes to transcriptional regulation. This video ex-

plains the basic concepts behind transcription as a necessary biological process that is

the first step in creating proteins in a cell. It visualizes the complex interactions

of transcription factors, nucleosomes, and the transcriptional machinery with the

DNA, including the often ignored mechanism of transcriptional interference. The

video was created in conjunction with a summer internship program for undergrad-

uate Computer Science students (Michelle Soult, Catherine Dewerd, Hayden Berge)

and submitted to the National Science Foundations’ Visualization Contest in 2014

(www.nsf.gov/news/special reports/scivis).

• Created a language to abstractly describe component interactions as

graphs. The Petri net graphs represent the component states and state changes

that occur with each interaction. The language describes the syntax and semantics

for abstract templates and variable substitutions used to generate multiple related

interactions for each abstraction. This allows complex models to be generated from

less complex abstract interactions.
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• Created an ASCII visualization of configuration of components bound to

the DNA at each time step of a simulation. Every time point of the simulation

provides a snapshot of the configuration of factors bound to the DNA, which can be

used to reveal patterns of behavior not seen in summary results. From the output

of the model simulations, I generate an ASCII visualization of the configuration of

factors bound to each nucleotide of the DNA at each time step. The state of each

position of the DNA is uniquely represented as a single character linearly in a line of

text. The movement of factors along the DNA can be inferred by the movement of

factor positions in consecutive display lines.

• Created an animation of the component interactions based on the inter-

mediate simulation results. The simulation results can be interpreted as a script

for component movement. Each time point specifies the configuration of components

along the DNA. By inferring the movement of components between time points, a

trajectory for individual components can be calculated. A visualization framework,

provided by Unity, was used to manage the virtual environment and display of in-

dividual component movements. The goal of the animations was to provide visual

feedback on the cellular behavior based on the modeling parameters. Ultimately, the

animations would be used in a teaching tool for students studying transcriptional

regulation. The animations were created in conjunction with a summer internship

program for undergraduate Computer Science students (Chad Bryant, Emily Owens,

Malcolm Duren).

• Mentored a fellow graduate student (Joe Rokicki) in the creation of a tool

for the visualization of proteome conservation among bacterial genomes.

The relationships between bacterial genomes are complicated by rampant horizontal

gene transfer, varied selection pressures, acquisition of new genes, loss of genes, and

divergence of genes, even in closely related lineages. As more and more bacterial

genomes are sequenced, organizing and interpreting the incredible amount of rela-

tional information that connects them becomes increasingly difficult. CodaChrome is
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a user-friendly and powerful tool for simultaneously visualizing relationships between

thousands of proteomes recorded in GenBank. The relationships between a bacterial

proteome of interest and the proteomes of every other bacterial genome are visual-

ized as a massive interactive heat map. published in BMC Genomics: Rokicki, J.,

Knox, D., Dowell, R. D., and Copley, S. D. (2014). “CodaChrome: a tool for the

visualization of proteome conservation across all fully sequenced bacterial genomes”

(doi:10.1186/1471-2164-15-65).

1.4 Assumptions and Limitations

Every modeling system makes general underlying assumptions and includes a set of

limitations. While many of these assumptions are common knowledge, they must be em-

bedded into the computational models to generate the behavior described. Therefore, in

this section I have explicitly listed many of the assumptions and limitations of this work.

1.4.1 Assumptions

• Each component behaves independently of other components. The behavior

of each component is modeled as an independent molecule. Complexes must therefore

be defined separately as independent components. It is assumed that binding of a

factor with the DNA is independent of other factors binding elsewhere along the

sequence beyond the direct binding positions. However, it is known that binding of

factors will change the DNA structure through bending or torsional forces changing

the width of major and minor grooves along the DNA helix. These behaviors can be

modeled as occlusions of the DNA extending beyond the direct component binding

positions.

• The configuration of components regulates the transcriptional events. It

is my contention that every component exhibits simple behavior, such as binding

and unbinding, similar to the states in Wasson and Hartemink (2009). Activation

and repression occur because of the configuration of the components along the DNA

sequence. In one configuration the probability of transcription is greater than in other

configurations and is interpreted as the activating configuration.
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• More resolution of DNA components (nucleotide level) will elucidate the

mechanisms used to regulate transcription. Most of the current modeling meth-

ods for transcriptional regulation are focused on explaining “which” genes are affected

by changes in transcription of a particular gene. They have been migrating towards

models that also use the transcription factor binding within regulatory modules (lo-

cated in the promoter regions of genes) to enhance the model. My work is focused on

asking the question of “how” the change in a factor’s concentration can affect tran-

scription of another gene. This means finding the mechanisms used for regulation.

These mechanisms are directly related to the DNA sequence and therefore the models

must be able to be defined at nucleotide resolution. However, there are many inter-

actions that may affect the regulation that are still completely hidden even at this

resolution. Chromatin and DNA modifications (epigenetics) are some of the details

that are still being ignored.

• Each simulation represents a cell in an quasi-steady state. Meaning that

concentrations (or molecule counts) of components do not vary during the simulations.

Each quasi-steady state will have many different patterns of factors bound to the DNA.

By collecting the distribution of the time spent in each configuration, I gain insight

into the underlying dynamics. Changing the initial molecule counts for the model

simulation will create different distributions of the configurations that occur.

• Sequence affinity (motif descriptions) can be used to approximate the

strength of binding for any component. The affinity of each component is

used to determine the on-rate and the off-rate for interactions with DNA. The in-

teraction rates are calculated by applying the position specific scoring matrix to the

local sequence at each position. It is assumed that the closer the sequence matches

the motif, the more likely binding will occur at that position. It is also assumed that

better motif matches imply a longer residency time for the factor bound to the DNA.
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• I have selected yeast (Saccharomyces cerevisiae) as the model organism.

Modeling transcriptional regulation in bacteria is simpler than in eukaryotes, although

in bacteria the transcription and translation processes can occur simultaneously, which

adds additional interactions affecting the behavior of the translational machinery. In

bacteria, the simultaneous transcription and translation has an immediate effect on the

local concentrations of the transcription factors driving the transcription. Eukaryotes

isolate the transcription and translation processes in separate compartments. There

is a pseudo steady-state environment in eukaryote transcription regulation until the

cell can translate the mRNA and move the proteins back into the nucleus. Eukaryotes

also contain additional factors for maintaining their larger genomes. Bacteria lack the

nucleosomes and chromatin structures found in eukaryotes. As I wanted to create a

framework that could be extended to model higher eukaryotes, I selected a well-studied

and relatively simple eukaryote genome of Saccharomyces cerevisiae.

There are many data sets providing data that can be used to describe the individual

component behavior. Transcription factor motifs for many of the over 150 known

transcription factors are available. There are many well studied loci within the genome

that provide me with regions for validating my generated models (see Hahn and Young

(2011) and Rando and Winston (2012) for reviews on transcriptional regulation).

1.4.2 Limitations

• Conversion of graphical representations is currently a manual process. The

interactions of all the components are described in Appendix A. I used these concep-

tual graphs to build the code that generates rules. This is currently a manual process

that must be applied for changes or additions of components to the model. Section

5.5 describes the work I have begun to automate this process.

• Many modeling parameters are required. Most of these parameters are cur-

rently unknown (or at least unmeasured), so values must be estimated from current

knowledge. The models are therefore not capable of accurately predicting the total
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system behavior. The interactions of the components and the relative behavior can

be explored using the models generated by the framework.

• Current implementation is tied to the stochastic simulator and its reaction

syntax. Although it has been widely used as a stochastic simulation engine, DIZZY

is a simple implementation that is not designed for the large set of rules and reac-

tants that are generated by the framework. DIZZY uses a simple and straightforward

syntax, however the design of the framework application could be extended to pro-

duce the more complex syntax of other modeling description languages. These other

languages can be used in many different simulation engines which would extend the

size and complexity of models that could be simulated. DIZZY was selected because

of its easy access and usage. DIZZY requires larges amounts of RAM to store all the

data in memory until simulation is completed. This limits the scalability of the model

simulations.

• The stochastic simulation engines are not designed to efficiently handle

the sparse rule sets. The stochastic simulation algorithm (Gillespie, 1976) has

been implemented in a number of simulation engines. These engines were designed to

handle dense networks of interactions. My modeling generates very sparse networks as

most rules only interact with a few components and there is only one molecule shared

across many component states. This means that many rules transition between active

and inactive as each interaction is applied. The current engines consider the entire

model as a single system, but the events occurring along one segment of DNA are

independent of events at other locations. The current engines do not support parallel

simulation of DNA segments across multiple processors to allow modeling large human

genomes. To handle the sparseness of active rules and scaling up to human genomes

may require the design of a new simulation engine.

• The Mediator complex and its interactions are ignored. Mediator is a large

complex of many different molecules and is found at or near most transcription sites.
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However, its exact role and behavior is still being explored. As we gain knowledge of

its behavior, it can be added into the components of the modeling framework.

• The behavior of chromatin remodelers are ignored. There is a class of tran-

scription factors that can actively change the configuration of factors bound to the

DNA. Chromatin remodelers are known to evict or move nucleosomes to less favor-

able locations. These factors are important players in the regulation of transcription.

While the behavior of simultaneous movement of multiple components is easily de-

scribed in my modeling framework, the when and where for remodeler binding is still

unknown and therefore are excluded from the framework.

• The modifications to histone tails are ignored. The histones that comprise the

core proteins of a nucleosome have tails that wrap around the DNA. There are many

post-translational modifications, such as methylation, acetylation, phosphorylation,

ubiquitination, etc, that can change their interaction with DNA. Some modifications

stabilize the nuceleosome, while others will destablize the nucleosome. Although many

of the modifications are associated with transcription, most of the rules for how these

marks change the nucleosome behavior are still poorly understood. Likewise, DNA

methylation, another epigenetic mechanism, is ignored.

1.5 Biological Background

This section reviews the key concepts and components of transcriptional regulation.

Section 1.5.1 provides an overview of the transcription process. The interactions among key

factors involved in regulation are described in Section 1.5.2. Transcription is an inherently

stochastic process, as highlighted in Section 1.5.3. Finally, in Section 1.5.4, I discuss the

state of the art experimental techniques for single cell biological experiments that highlight

the need for a new modeling approach.

1.5.1 Overview of Transcriptional Regulation

All living things on this planet are made up of cells, which, despite the great diversity

between them, all behave using the same basic mechanisms (Alberts et al., 2007). The

common processes that support life have been distilled into the central dogma of Biology:
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DNA is used to produce messenger RNA that in turn are used to produce proteins (Fig-

ure 1.2-a). The information for cellular behavior is stored in DNA and can be replicated and

passed on to offspring. Transcription is the biological process of reading a DNA template

and producing an RNA copy of that template. Translation reads the RNA to produce the

proteins that are required to maintain all cellular activities.

(a)

(b)

Figure 1.2: The Central Dogma of Biology as seen from viewpoint of Biologist
and Computational Biologist. a) The central dogma of Biology embodies the notion
that a DNA template is used to create the RNA copies that are used to create the proteins
used in biological processes. b) In Computational Biology, the focus is changed to the
processes, where DNA, RNA, and proteins are the inputs and outputs of the processes.
Transcription is the process that takes the current DNA state as input and produces an
RNA as the output. The translation process converts the RNA input and outputs a set
of amino acids that form the protein represented by the RNA. Many of the proteins do
not immediately interact with the processes, but are sequestered away from the processing
environment, waiting until the cell detects an internal or external signal that causes the
proteins to return to the processing environment and change its behavior. Current biology
textbooks usually show the dogma as a linear process, but we show it as a circular set
of processes that feedback upon each other. The processes are shown as clouds and the
solid black arrows show the inputs and outputs of the processes. The grey hatched arrows
depict the influence on the DNA state by the proteins, the RNA products, and even the
transcription process itself.

Biological textbooks usually show the central dogma as a linear process from DNA to

protein (Figure 1.2-a). The arrows represent the processes to convert between the different

types of molecules. If we take an alternative view of the dogma, which focuses on the

processes, the DNA, RNA, and proteins are now the inputs and outputs of the processes.

In figure 1.2-b, I have redrawn the dogma as a circular process that includes feedback from
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other processes as input to the transcription process. The grey hatched arrows depict the

influence on the DNA state by proteins, the RNA products, and even the transcription

process itself.

Figure 1.3: Transcriptional Regulation depends on the state of the DNA. Tran-
scription only occurs when the DNA is in the correct state. Modeling of transcriptional
regulation must include all the influences on state of the DNA. There are different methods
by which the DNA state can be modified. Some proteins are known to influence the tran-
scription of genes and are collectively referred to as transcription factors. Some of these
factors immediately influence regulation, while others are sequestered away until the cell
receives signals to allow them to influence the DNA state. There are RNAs that directly
interact with the DNA and modify the DNA state. The transcriptional machinery is a
large RNA complex that directly interacts with the DNA, changing the DNA state as it
transcribes along the DNA sequence. My framework is flexible and can encompass all of
these influences and apply them to a given DNA sequence to build a model of the system
of biochemical interactions.

To produce cellular response and activity, the information encoded in the DNA must

be read and converted into functional molecular machines. Some proteins regulate the

transcription process, creating a feedback loop. A detailed molecular understanding of

regulation is one of the major interests of biology. Understanding how transcription is regu-

lated, namely when (temporal) and where (positional) RNA is produced, is the underlying

goal of transcriptional modeling systems.

There are a number of regulation mechanisms to control the resulting concentration

of any protein. Regulation of the transcription process is the first, followed by regulation

of post-transcriptional processes, transportation of resulting RNA, translation, and the

degradation of the protein. In this work, I focus on the transcription process and its

regulation. The regulation of transcription is the resulting behavior of a complex system of

interactions between a number of different components (Figure 1.3).
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1.5.2 Components of Regulation

The transcription process in all species uses fundamentally similar mechanisms and

requires the coordination of hundreds of different molecules. To transcribe a region, the

DNA is first bound by factors that reconfigure the DNA structure and allow formation

of the transcriptional machinery complex. RNA polymerase is composed of many different

proteins that together constitute an active cellular machine to transcribe DNA into an RNA

copy. The transcriptional machinery separates the strands of the DNA helix and proceeds

to read one strand. The machinery transcribes along that strand until a signal indicates the

end of transcription and starts the disassembly of the machinery into individual molecules.

Transcriptional regulation is the system behavior arising from the interaction of nu-

merous regulators with DNA and the transcriptional machinery complex. The complex

system of transcriptional regulation produces precise gene expression at specific times and

locations. Experimental studies of gene expression have unlocked the function of many

proteins involved in regulating the transcription process (Bai et al., 2011; Bradley et al.,

2010; Darzacq et al., 2007; Farnham, 2009; Hahn and Young, 2011; Lickwar et al., 2012b;

Mack et al., 2012; Mirny, 2010; Palmer et al., 2011; Segal et al., 2006; Venters et al., 2011).

New experimental techniques are constantly being developed to understand transcriptional

regulation at unprecedented temporal and molecular detail, ultimately even at single-cell

resolution (Galburt et al., 2009; Larson et al., 2011; Levsky et al., 2002; Taniguchi et al.,

2010). Yet, much is still to be learned as the behavior of the system cannot be explained

solely by the behavior of the individual components.

There is growing evidence that transcription emerges not solely from the individual

components, but rather from the collective behavior (including competition and coopera-

tion) between the components (Larson et al., 2011; Sanchez et al., 2011; Segal and Widom,

2009a; Struhl and Segal, 2013; To and Maheshri, 2010; Wasson and Hartemink, 2009; Zeevi

et al., 2011). DNA undergoes millions of interactions every second, constantly changing

the configuration of the molecular components bound. Transcription is simply the con-

trolled recruitment and processivity of the transcriptional machinery. Regulation of the
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transcription process involves four major classes of components: the DNA, transcription

factors, nucleosomes, and the transcriptional machinery. These factors interact in complex

ways, both cooperatively and competitively, to induce transcription. It is the stochastic,

temporal, and spatial interactions of these regulators that control the transcription process

in each individual cell (Coulon et al., 2010).

1.5.2.1 DNA

DNA is the central molecule of transcriptional regulation. Whereas the concentration

of all other components varies based on condition or cell type, the number of copies of the

DNA per cell is largely defined by the organism or differentiated cell type. The DNA not

only encodes the blueprints for the creation of proteins, but also encodes the instructions

for when, where, and how much of each transcript to produce.

DNA can be envisioned as a linear string of nucleotides that acts as a stable information

storage molecule within cells. Each nucleotide of DNA has two building blocks. One part

forms a sugar-phosphate backbone structure that links the linear sequence (strand), while

the second part is a side chain of either adenine (A), cytosine (C), guanine (G), or thymine

(T). These side chains, known as bases, form hydrogen bonds with their counterparts:

adenine binds with thymine and cytosine with guanine (see figures 4-3 and 4-4 in Alberts

et al. (2007)). Two strands of complementary DNA bind to form the highly stable double

helix with between 10 and 11 nucleotides per turn of the helix. There are the common helix

patterns (right handed A- and B-forms) and the less common left handed helix (Z-form)

that have individual linking and compaction characteristics. Although the Z-form has been

associated at regions of transcription, I use the common B-form for illustrations in this work

(Alberts et al., 2007).

The strength of the binding between strands of DNA is sequence dependent as one of

the pairs of nucleotides has more bonds than the other. The stability of the pair bonds

comes into play when the transcriptional machinery is trying to separate the strands. The

amount of DNA required to describe even the simplest of cells is too large to be stored

as a straight structure, which requires the DNA backbone to be flexible. The collection
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Figure 1.4: Representation of a DNA segment with a gene and a non-coding
transcript. Most of the figures of transcriptional regulation include the basic concepts
depicted here. A gene’s protein coding region is represented by a rectangle (blue) on the
DNA. The sense (reading direction by translation process) direction of transcription is
indicated with an arrow extending from one end of the coding region. There is also non-
coding transcription indicated by an arrow extending from the DNA sequence. Here we
show an anti-sense transcript in an opposite direction. The locations of transcription factor
binding sites are indicated using a small rectangle (red) on the DNA.

of all DNA (genome) in complex organisms is so large that it requires additional layers of

organization (known as chromatin) to pack the DNA into the nucleus. The first level of

structure is the nucleosome, which wraps DNA around a set of histone proteins. When a

segment of DNA is populated with nucleosomes, it forms what looks like pearls on a string.

Higher orders of chromatin organization coalesce the DNA into tighter structures to further

condense and protect the DNA. Ultimately, the DNA for a genome is divided into a set of

chromosomes at the highest level of organization.

In this work, I use the yeast Saccharomyces cerevisiae as the model organism. The

S. cerevisiae genome has sixteen chromosomes that are numbered using roman numerals.

The individual strands of complementary DNA are named in yeast. The forward strand

(as defined by the reference genome) is named ’Waston’, while the complementary strand

is named ’Crick’. Canonically, the DNA is usually depicted as a line, a gene that encodes

a protein depicted as a box, and the direction of transcription is indicated with an arrow

(Figure 1.4). There can also be non-protein-coding transcripts produced along the DNA

that are depicted as an arrow without a box. The DNA contains a start and stop signal for

the translation process, which in yeast defines the bounds of the gene box. Transcription

usually begins upstream (before the gene start) and continues past the gene stop before

terminating.

The DNA also contains specific sequences that are recognized by DNA binding proteins

that are involved in the process of transcriptional regulation. These proteins recognize

specific patterns or sequences of DNA with different affinities often represented by position
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specific scoring matrices (PSSMs). These motifs are depicted as rectangles on the DNA in

our cartoons (red rectangle in Figure 1.4). When factors bind to the DNA, they typically

occlude a local region of DNA, preventing nearby binding by other proteins. This creates

a competition for the DNA between the factors. The cell uses the competition to regulate

the DNA accessibility.

1.5.2.2 Position Specific Scoring Matrix (PSSM)

Position specific scoring matrices, also known as position weight matrices, have been

used to capture the affinity of an individual factor for different sequences of DNA for decades

(Stormo, 2000, 2013). DNA binding factors interact differently with different sequences of

DNA. If an individual factor would only recognize a single unique sequence, then we could

represent the interaction with two parameters: the on-rate and off-rate. This works well

for free floating, well mixed environments where the molecules have a limited number of

interactions depending on the molecule counts and volume of the environment. However,

the positively charged transcription factors have a natural attraction to the negatively

charged DNA, which leads to non-specific binding along the DNA. The non-specific binding

may only be transient, but sequences that partially match the intended sequence will have

stronger affinity for the factor than for random DNA sequences. High affinity binding sites

will more likely be bound at low molecule counts, while low affinity sites will require high

molecule counts before the site will be highly bound. The high affinity sites also have longer

residency times than the transient binding of the low affinity sites.

A PSSM captures the affinity of a DNA binding factor for a sequence, position by posi-

tion. The simplest method for determining a PSSM is to collect a set of sequence fragments

that have been bound by a factor. These sequences are usually large fragments (20-100

nucleotides) and the factor generally only recognizes a few nucleotides (4-20), therefore a

common sub-sequence within the collection would be expected. The most common or likely

sequence would be the consensus motif that most biologists report as the binding sequence.

However, the factor usually only has a few mandatory positions within the sequence and al-

lows multiple different nucleotides to occupy the intervening positions. Aligning the pattern
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Figure 1.5: TF affinity can be scored for any sequence by using the TFs PSSM.
An example PSSM, here for Reb1, describes the probability of binding at each nucleotide
for any possible sequence. Positions are assumed to be independent and therefore the
probability of a TF binding to any arbitrary sequence can be easily calculated.

across multiple sequences, the number of times each nucleotide is found at each position

can be calculated. Using the counts, we can calculate the log-odds of seeing a particular

nucleotide at a particular position within a bound sequence of DNA. Storing the values for

each nucleotide for each position results in a matrix. We can set the values of the matrix

to be probabilities of each nucleotide at each position, or we can assign a score for each nu-

cleotide at each position. The scores could be positive for a matching nucleotide or negative

for an unlikely nucleotide, resulting in a PSSM.

The PSSM contains the consensus motif as the highest scoring sequence, but also allows

any sequence to be scored. Some alternative sequences to the consensus motif will still be

able to score highly, indicating that even at low concentrations of the binding factor, sites

with the alternate DNA sequence would also be bound.

PSSMs provide a powerful tool for predicting the likely binding sites for any DNA

sequence. We can iteratively pass sub-sequences to the PSSM and use the high scores to
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predict not only the binding sites, but also the sites of high transcription factor residency

times.

Consider the REB1 transcription factor as an example (Figure 1.5). The transcription

factor has particular sequences to which it preferentially binds, described by its PSSM. This

matrix specifies the number of positions, as well as the nucleotides that are preferentially

bound at each position. For any given sequence, we can calculate a score by adding up all

the values for the sequence’s nucleotide at each position. The resulting score indicates how

well the given sequence matches the best sequence for the factor.

1.5.2.3 Nucleosome

The most prevalent DNA binding factor is the nucleosome. Nucleosomes are an addi-

tional regulatory component in eukaryotes, which form stable structures by wrapping ~147

nucleotides of DNA around a core of eight histone proteins. The pliability of the DNA

helix is sequence dependent, which creates an implicit probability of nucleosome formation

depending on the energy required to bend the specific sequence of DNA (Drew and Travers,

1985; Morozov et al., 2009). Additionally, the histone proteins have a binding affinity for

sequence pairs across large sequence segments (see figure 4-28 in (Alberts et al., 2007)).

Therefore, conceptually, nucleosomes can be thought of as recognizing a large segment of

DNA with different affinities for preferential binding (Lowary and Widom, 1998).

The formation of a nucleosome steps through a number of intermediate stages. The

first stage binds pairs of H3 and H4 histones with ~80-90 nucleotides to form the core of

the nucleosome (Figure 1.6). The histone pairs H2A and H2B are then included to bind the

entry/exit DNA to the nucleosome core. It is the nucleosome core that exhibits an affinity

for a sequence pattern. The DNA bound within a nucleosome wraps ~1.7 times around

the histone core and DNA pair binding creates structural features that preferentially allow

the histones to bind in the minor groove of the helix. The preferential pattern of DNA

for binding has AT pairs along the inside, separated by a single turn of the DNA (10-

11 nucleotides), and GC pairs along the outside of the turns. The histone proteins have
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tails that are able to wrap around the DNA to form a stable nucleosome. The tails allow

modifications that will change the ability of the tail to maintain binding.

Although any DNA sequence can be folded into a nucleosome, each sequence of DNA

requires energy to bend around the histones. Different sequences require different levels of

energy for nucleosome formation. The competition between histone affinity, DNA bending

energy, and the occlusion by other DNA binding factors allows the cell to regulate the

nucleosome positioning, sometimes with great precision. For example, there is often a

nucleosome well positioned at the transcription start site (Struhl and Segal, 2013).

The affinity of histones for specific patterns of DNA is captured in an alternative PSSM.

The histone affinity is for pairs of nucleotides as opposed to the single nucleotides of tran-

scription factors (Wasson and Hartemink, 2009). This means the PSSM must represent

all 16 possible pairs of nucleotides across the entire length of the nucleosome. The current

steady state models use a PSSM to descibe the probabilities for nucleotide pairs at 127

positions centered on the dyad of the core histones. My extended model uses the central

87 nucleotide pair positions of the PSSM to calculate the state transitions for the core

nucleosome.

Nucleosomes along the DNA are the first level of chromatin, which packages and protects

the DNA. Due to the physical size of the binding proteins, not all the DNA is bound

within nucleosomes. There is always a linker of DNA between individual nucleosomes.

The linker length is variable and dependant on the different chromatin remodelers that are

active (Struhl and Segal, 2013). Higher orders of chromatin condense the DNA further

and require more regulation to access that DNA (Rando and Winston, 2012). Nucleosomes

are compacted into denser structures and ultimately form the recognizable chromosome

structures.

1.5.2.4 Transcription Factors

Transcription factors are proteins that recognize small segments of DNA (typically 4-20

nucleotides) (Badis et al., 2009; Bulyk et al., 2001). They often work in groups or complexes,

allowing for varying degrees of control over the transcriptional process. Transcription factors
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Figure 1.6: Nucleosome formation dynamics. Structural states of the nucleosome
that are likely to be interchangeable. These include the tetrasome, which is formed by
the wrapping of 80 bp DNA around a quartet of (two H3 and two H4) histones. Nucle-
osomes may undergo spontaneous structural transitions that are characterized either by
the transient release of the DNA ends or by a transient opening of the interface between
histone subcomplexes. Some states may be favoured by DNA sequence, histone variant
incorporation or post-translational modifications. This figure is adapted from Luger et al.
(2012).

can function as activators or repressors of transcription. The influence of transcription

factors on the activity of different target genes has often been captured in gene regulatory

networks (Karlebach and Shamir, 2008).

The ability of a regulator to bind to DNA may be influenced by the competition with

other proteins for a sequence, the nearby positioning of nucleosomes, the presence of co-

factors, and the post-translational state of the transcription factor itself. Particular con-

figurations of interacting molecules are necessary for the recruitment of the transcriptional

machinery and activation of transcription.

When a factor binds, it occludes the DNA and alters the possible interactions in that

region of the sequence. The longer the residency time (time an individual factor is bound),

the more effect it has over the local configuration of other factors bound to the DNA.

Although many transcription factor affinities and binding rates are known, the residency

times have not yet been measured for many factors (Lickwar et al., 2012b).

The nucleosomes condense and prevent the DNA from binding with transcription fac-

tors. Once a nucleosome is evicted, the transcription factors can access that DNA. If a
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Figure 1.7: Chromatin packaging. Models for the different levels of chromatin packag-
ing, from the bare DNA strands through the most condensed packaging seen during mitosis.
This figure is adapted from Alberts et al. (2007).

factor binds with the newly accessible DNA, the DNA cannot be re-incorporated into an-

other nucleosome, leaving the entire region accessible. Transcription factors bind to much

smaller regions of the DNA than nucleosomes. This allows multiple factors to bind in the

newly accessible DNA. Keeping the DNA open and accessible can be obtained either from

explicit cooperation between factors (e.g. Ste12-Tec1) or through implicit cooperation be-

tween independent factors (e.g. Mcm1-Reb1-Rsc3 at CLN2 nucleosome depleted region).

There is a constant competition for the DNA, with the nucleosome formation closing off

access and transcription factor binding opening up access to the DNA.

1.5.2.5 Transcriptional Machinery

This machinery is a large complex composed of a diverse set of protein subunits that

assemble on the DNA (see (Hahn and Young, 2011) for a detailed review of transcriptional

machinery components and behavior). The transcriptional process is separated into three

stages: initiation, elongation, and termination. The many components of the transcrip-

tional machinery assemble a pre-initiation complex on a sequence of DNA. It must separate
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Table 1.1: Examples of transcription factor binding motifs.

Transcription Factor Consensus Motif Logo (Schneider and Stephens, 1990)

REB1 TTACCCG

MCM1 CC...T..GGAAA

SPT15 ATATATA

the strands to obtain access to a single strand, and primes the first few nucleotides of

matching RNA. The energy required to separate the double stranded DNA is dependant

on the sequence, as the segments with high number of GC pairs is stronger than with a

corresponding high number of AT pairs. Although the machinery can assemble in either

orientation on the double stranded DNA, once the components are assembled, transcription

progresses in only one direction on a single stand.

Once the complex has completed initiation, it can begin the elongation stage. Elon-

gation is the stage where the DNA template is transcribed into an RNA copy. The tran-

scriptional machinery must deal with obstacles in its path along the DNA and presumably

will evict nucleosomes and other DNA binding factors as it traverses the DNA. Elongation

is not a simple continuous process. It can pause, arrest, edit mistakes, or abort before

reaching the termination signal. Elongation continues until a transcription stop sequence is

encountered and the transcriptional machinery transitions to the termination stage.

Termination of the RNA is most often performed when a signal within the sequence

is encountered. The pre-mRNA can be further processed, such as a poly-A tail being

appended, to create a messenger RNA that is ready for transportation to translation process.
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Table 1.2: Types of RNAs produced in cells.

RNA type Function of RNAs

mRNA Messenger RNAs, instructions for producing proteins.

rRNA Ribosomal RNAs, the basic structure of the ribosome that
translates mRNA into protein.

tRNA Transfer RNAs, adaptors used to match mRNA nucleotides
and amino acids.

snRNA Small nuclear RNAs, variety of functions, including the splic-
ing of pre-mRNA.

non-coding RNA Used in diverse cellular processes, including telomere syn-
thesis, X-chromosome inactivation, and sometimes only the
process of transcription is required to regulate other tran-
scription.

Once the machinery has terminated the transcription, it releases the DNA and breaks up

into its individual components.

There are many different types of RNA produced in cells and they require different sets

of transcriptional machinery (Tables 1.2 and 1.3). In this work we are only concerned with

Table 1.3: Polymerase used to generate different types of RNA.(Alberts et al., 2007)

RNA Polymerase Type(s) of RNAs transcribed

RNA Polymerase I Ribosomal RNA (rRNA - 5.8S, 18S, and 28S).

RNA Polymerase II All protein-coding genes, plus snoRNA genes
and some snRNA genes.

RNA Polymerase III tRNA genes, rRNA genes (5S), some snRNA
genes and other small RNAs.
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transcription of the gene coding regions and focus exclusively on the RNA polymerase II

behavior.

1.5.3 Dynamics of Regulation

Recent experimental work has highlighted a number of inherently dynamic events that

contribute to transcriptional regulation. Transcription factor residency times (how long a

factor remains bound at an individual site) may be an important but previously overlooked

aspect of regulation (Lickwar et al., 2012b). The histone proteins within a nucleosome are

modified, swapped, or displaced during transcription, which changes the behavior of indi-

vidual nucleosomes (Workman, 2006; Kulaeva et al., 2013). Finally, the movement of the

transcriptional machinery along DNA is a highly dynamic process that pauses, shows vari-

able processivity, and likely evicts DNA binding factors that impede its forward progress

(Coulon et al., 2013). In fact, when one transcriptional machine directly impacts a sec-

ond transcriptional process, this interaction is referred to as transcriptional interference

(Prescott and Proudfoot, 2002). The kinetics of these events is often inherently local and

intrinsically stochastic.

1.5.4 Single Cell Variation

The dynamic aspects of regulation are most apparent when examining single cell tran-

scription. These studies have been made possible by recent technological innovations, such

as fluorescent protein tracking and real-time nascent transcription observations (Taniguchi

et al., 2010; Pelechano et al., 2010). In these studies, variability in transcription and protein

expression is widely observed, likely stemming from fluctuations in cellular abundances of

proteins, the stochastic nature of molecular interactions, and microenvironments within a

cell (Elowitz et al., 2002; Kaufmann and van Oudenaarden, 2007). Transcriptional regula-

tion is inherently dependent upon the biochemical interactions of many different molecules,

but robust enough to handle the stochastic fluctuations inherent in any molecular system.

The resulting cell-to-cell variability is likely fundamental to most, if not all, molecular cel-

lular processes (Huang et al., 2009; Schwabe et al., 2011).
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CHAPTER II

MODELING PERSPECTIVES

The process of creating biological models is an iterative process of model formation,

model verification, model simulations, and model validation (Figure 2.1). During model

formation we take the accumulated data and knowledge to expand or abstract the details

within the model. Once the model has been described, the model is verified to ensure the

implementation is correctly representing the behaviors that have been formulated. The

verified models are used to simulate the behavior of the modeled system. The results are

collected and compared against the real world experimental data during the validation

stage. The simulation of a model may only require a single simulation for deterministic

models or many simulations for stochastic models that are non-deterministic to provide a

distribution of possible trajectories for the model. The comparison analysis of the predicted

behavior and the experimental data provides insight into which areas of the model could

be enhanced, either by collecting more data, collecting new data, or modifying the model.

Each interaction takes a step towards better models, but as the models increase the ability

to match the experimental data, they become more complex and usually require more

computational resources to complete each stage.

At the center of this development process is the selection of a perspective (Figure 2.1).

The formation of a good model is predicated on knowing what kinds of answers are needed

for the relevant questions that are being asked. This means that there are many methods

and different perspectives from which researchers could look for answers to their questions.

Selecting a single perspective and method depends on those questions, as well as under-

standing the available data. Choosing a perspective for biological systems is difficult because

of the large number of components, each with its own behavior.

We build models of what we think we understand. Often we do not have enough data

for all the behaviors to be well understood. Yet, those behaviors must be included in the

model and we add a new component to represent the behavior. Other times, we have too
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Figure 2.1: Modeling development cycle is an iterative and collaborative pro-
cess. Developing models of biological behavior requires an iterative and collaborative pro-
cess of data analysis leading to model formation, verification, simulation based predictions,
and validation of model results against the experimental data. Model Formation encap-
sulates the data and knowledge about the real world behavior of a biological system as a
computational model. Model System Verification ensures the computer implementation
of the model is correct. Model Simulation uses the verified model to simulate and cap-
ture the predicted biological behavior. Model Validation compares the simulation results
with the experimental data to determine the degree to which the model matches the real
world behavior. The results of the simulations are compared to the experimental data to
understand how closely the model is matching the real world data. This comparison and
analysis may lead to directing the collection of new experimental data. The development
cycle spirals outward as the model is improved. As it spirals outward the model becomes
more complex and assimilates more data. However, as the model becomes more complex,
it requires an increase in the computational resources required to process each step. This
figure is based on Thomas H Jordon’s “Inference Spiral of System Science.”

much knowledge about components that is not relevant for the questions being asked. These

details are abstracted away by combining all the behaviors into a less complex component.

And finally, we may be given higher resolution data that requires a new level of detail

within the models, which can be accomplished by replacing or adding more components

and interactions. Determining which details to hide and which to define depends on the

questions being asked, the data available, and the types of answers required.

2.1 Selecting a Modeling Perspective

Current models of transcriptional regulation vary tremendously in their underlying per-

spective on the biological process. In Figure 2.2, I have arranged some of the major modeling

perspectives along an arbitrary axis, followed by a list of the major attributes we want to

achieve. It is not possible to maximize for every attribute as they can be mutually exclusive.
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Figure 2.2: Modeling Perspectives. The modeling perspectives are arranged along
the x-axis from least to most detail of the models. Below them are wedges representing the
level of an attribute in each of the modeling perspectives. We would like to maximize for
all the attributes, however as the graphic indicates, model selection is a trade-off between
the different attributes. Figure adapted from (Karlebach and Shamir, 2008).

Therefore, selection of the perspective is a trade-off between the attributes and is dependent

on the questions to be asked of the model. Each perspective focuses on different levels of

resolution or detail within the model. If we are interested in understanding the effect of a

signaling pathway or knowing what genes are affected by changes in levels of other genes

(gene regulatory networks), then interaction network models can be used. These models

are able to analyze thousands of genes and millions of interaction possibilities on standard

computer hardware. On the other hand, if we are interested in the details of binding be-

tween a transcription factor and the DNA, we must select a perspective that has details of

the individual bonds between atoms of the molecules. The molecular dynamics models are

very detailed, but can only produce milliseconds of simulation time by using many hours

of today’s multiprocessor supercomputers. These trade-offs of computational resources and

level of detail must be weighed against the ability of the models to produce results for the

questions being asked.
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2.1.1 Molecular Dynamic Perspective

The arbitrary axis of the modeling spectrum in Figure 2.2 differentiates between three

different modeling perspectives. At one end of the axis are molecular dynamics models

that focus on the physics behind atomic interactions between molecules. These models

are used to answer questions about the shapes, structures, and bonds between atoms in

multiple molecules (see Karplus and McCammon (2002) for review on molecular dynamics

models). Molecular dynamics models are very detailed models that provide exact physical

behavior over very short timescales using quantum or molecular mechanics. However, they

are very detailed, which requires tremendous amounts of computational resources to model

two molecule interactions for a few nanoseconds. There are modeling methods that attempt

to reduce the computational costs by coarse-graining, which abstracts the individual atoms

into pseudo atoms and calculates the behavior of the pseudo atom at each time step. Even

with this abstraction, the models are limited in number of atoms and typically can only

model 10 milliseconds of time. It is not possible for these models to be scaled up even to

the relatively small numbers of molecules that interact with a small sequence of DNA.

2.1.2 Interaction Network Perspective

At the other end of this arbitrary axis are the interaction networks representing the

knowledge (both qualitative and quantitative) of relationships between components of a

system. In transcription regulation modeling, a primary example of these networks are Gene

Regulatory Networks (GRNs), which seek to capture the logic of a circuit by describing the

behavior between genes (see (Hecker et al., 2009) for review on inferring gene regulatory

networks). Interaction networks capture the correlation between changes in the level of

one component and the changes in levels of all the other components. These correlations

are usually captured in a graph where all the components are nodes and the relationship

between nodes is represented by an edge. Both the components and the relationships can

have associated attributes that further describe the relationships.

There are a range of different modeling methods that can represent the relationships

captured from experimental data (Karlebach and Shamir, 2008). These methods are fo-
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cused on the behavior at the gene or regulatory module level of detail. As almost all the

experimental data has been collected as population averaged behavior, the models answer

questions about the population average behavior and not the behavior of any single cell.

Interaction network models are great for asking questions about which other components

would be affected by changes in a specific component. However, these models represent only

the correlations between levels and not causation. If we want to ask ”why does the change

in level of a component cause the probability of another component’s transcription?”, then

we must change our modeling perspective to one that contains the hidden details beyond

the interaction networks.

2.1.3 Regulatory Dynamic Perspective

Regulatory dynamics models focus on the dynamic interactions between DNA binding

factors and a sequence of DNA at nucleotide resolution to study the spatial and temporal

behavior of the transcriptional regulation mechanisms.

Transcriptional regulation in eukaryotes is not regulated by a single factor as is often

observed in prokaryotes. Eukaryotic regulation is a complex balance of many individual

factors behaving independently, but creating a higher order system control. This concept is

known as emergent behavior and is often described using examples of the behavior in a flock

of birds or a school of fish. Each individual bird or fish is behaving independent of the others,

but because of the dynamics of the group, they exhibit a higher order behavior. The same is

true at the microscopic level within a cell. Each individual molecule is performing the task

for which it was designed. Factors that bind DNA are constantly binding and unbinding

the DNA, staying longer at sequences where it obtains a stronger bond. Cooperativity can

be obtained through actual binding of two molecules to each other or by independently

binding in close proximity along the DNA. The independent binding by factors to produce

cooperative binding is an example of an emergent behavior.

To capture the emergent behavior of the complex system of interacting molecules in

transcriptional regulation, we must focus on a level of detail beyond the gene or regula-

tory module of the DNA. The behavior of each individual molecule must be modeled to
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understand the diversity of behavior in individual cells. In this work, I focused on the un-

derstanding of the mechanisms of transcriptional regulation at a high level of detail, while

maintaining computability for large sequences of DNA. Instead of focusing on the atomic

interactions of molecular dynamics models or the gene interactions of interaction networks,

regulation dynamic models focus on the nucleotide interactions between DNA and the DNA

binding factors. Regulatory dynamics models capture the temporal and spatial dynamics

between components that culminates in transcription.

2.2 Selecting a Modeling Method

Models within each of these perspectives can be built using different modeling methods.

Each method focuses on different aspects of the the system and represents the model in

different ways. The methods can be categorized as logical (Boolean network, probabilistic

network, Petri net, Hidden Markov Models), continuous (linear, differential equations, flux

balance analysis), and single molecule (rule-based). Each method has different strengths

and selecting which one to use depends on the questions being asked, the data available,

and the type of answer required for the questions. Several recent reviews discuss the trade-

offs inherent in choosing any method (Ay and Arnosti, 2011; Karlebach and Shamir, 2008;

Tenazinha and Vinga, 2011). The details of the different modeling methods have been

reviewed in more detail elsewhere, see (Hecker et al., 2009) for review on inferring gene

regulatory networks, (Ay and Arnosti, 2011) for general mathematical modeling methods,

and (Karplus and McCammon, 2002) for molecular dynamics models. As the modeling

methods for molecular dynamics do not scale well to the large number of components used

in transcriptional regulation, I will not discuss those methods in any further detail and focus

on the methods used in interaction networks and regulatory dynamics perspectives.

The division of the perspectives along a continuous scale is to categorize the abstract

differences between the questions the models are addressing. The theoretical distinction

between the different modeling perspectives is along a scale to generalize the categories.

However, this is a continuous scale and many of the transcriptional regulation interaction
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networks are becoming so detailed that they are approaching the single nucleotide resolution

of the regulatory dynamics models.

Most current modeling methods for describing models of transcription regulation fo-

cus either on the positional details (Greive et al., 2011; Segal et al., 2008; Wasson and

Hartemink, 2009) or the temporal dynamics (Chaouiya, 2007; Dresch et al., 2013; Ribeiro,

2010; Sanchez et al., 2013) of the system of interest. Here I will categorize the methods into

Statistical and Analytical, although some methods can span both categories by changing

the level of detail used to describe the models (Ay and Arnosti, 2011).

Statistical models are often used when the system to be modeled has a large number

of components. Graph based methods can represent the probabilistic models as neural,

Boolean, or Bayesian networks. However, these methods only allow an overview or big

picture of the system because the details are obscured to handle a large number of compo-

nents and to see the high level relationships. They are not able to explain the details of

the relationships between the DNA, transcription factors, nucleosome formation, and the

transcriptional machinery.

Analytical models are used to describe a smaller number of components in more detail.

Models describing detailed component behavior require more knowledge, which may be

unknown and must be estimated from current knowledge. The detailed models also required

more computational resources to process and therefore may limit the number of components

in a model to keep the computation tractable.

The analytical models can be deterministic or stochastic, discrete or continuous, and

are either solved or simulated. Most of the biological processes we are trying to model are

noisy (meaning that even the most improbable events can and do occur) and regulated by

a small number of molecules (a small change in the number of molecules will have large

effects). If the noise is ignored, deterministic models can be used to describe the behavior

of the system and a system of equations can be solved by applying the experimental data to

determine unknown parameters. Stochastic models incorporate the inherent noise as part
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of the system. These models explicitly describe the behavior and the variability of those

behaviors.

The behavior of any component can be described with population averaged behavior

or at single molecule detail. The general behavior within a population of cells can be

described as continuous values because it is a description of the fractions of cells with a

behavior. When the detail level is at single molecule resolution, the number of molecules is

discrete, as you cannot have only part of a molecule behaving one way and the rest behaving

differently. The molecular counts are discrete and every individual molecule has a distinct

state influencing the overall behavior of the system.

2.2.1 Equation-based Modeling Methods

Mathematical models have been successfully applied to biological modeling for many

years. The most common are Boolean and differential equation models, which have been

used for decades to describe gene regulatory networks. Boolean models have abstracted

all the details of the interactions away and only use the existence of a component in its

computations. The differential equation models define a detailed relationship between the

current levels of the components and the level of an individual component. Generally, these

models represent how the state of the system changes over time. The current state of the

system is recorded as a set of component concentrations or molecule counts. The state of

the system in the next time period can be calculated from a set of equations that uses the

current state of the system as parameters. The parameters of the model can be determined

either from direct experimental work or by solving for the unknown parameters by using

general experimental results data. However, often there are too many unknown parameters

to uniquely solve the set of equations using the limited experimental results.

Each equation in the model specifies how to calculate the next state of one component

using a function that considers the current state of all the components. In Figure 2.3,

the equations define the behavior of the levels of each gene over time. Each equation is

dependent on the levels of the genes at the current time point. For example, the first

equation represents the changes in levels of gene1 based on the constitutively expressed rate
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d(gene1)

dt
= k1,s ∗

1

1 + k1,3 ∗ gene3
− k1,d ∗ gene1

d(gene2)

dt
= k2,s ∗

k2,1 ∗ gene1

1 + k2,1 ∗ gene1
− k2,d ∗ gene2

d(gene3)

dt
= k3,s ∗

k3,1 ∗ gene1 ∗ k3,2 ∗ gene2

(1 + k3,1 ∗ gene1) ∗ (1 + k3,2 ∗ gene2)
− k3,d ∗ gene3

(a)

(b)

Figure 2.3: Differential Equation models are explicitly defined. This network of
three genes is modeled using ordinary differential equations (ODEs). (a) The level of each
gene can be calculated from the current levels of genes and each of the known reaction rates
(specified as ’k’) between components. (b) Graphical representation of the interactions
between the genes. Each circle represents a single gene. Arcs between genes represents a
correlation between the level of the arc’s originating gene and the destination gene. An
arrow head represents one gene having a positive effect (activating) on the level of the other
gene. A ’T’ end on an arc represents a negative effect (repressing) on the level of the other
gene. Figure from (Karlebach and Shamir, 2008).

of gene1 minus the repressive effect of gene3 and the degradation of the current level of

gene1.

The rates of each of these interactions may be known from experimental data or may

be discovered using the experimental data. For many decades, gene regulatory networks

such as these have been discovered from the large data sets for gene expression (see (Hecker

et al., 2009) for review on inferring gene regulatory networks).

This type of differential equation model is deterministic, using continuous values to

represent the population averaged levels of components. Given the same initial state, the

behavior over time is always the same. This means that the equations could be ‘solved’,

where every rate is explicitly defined. This has been accomplished for systems such as the
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metabolism of bacteria (Edwards and Palsson, 2000; Förster et al., 2003). The method of

Flux Balance Analysis (FBA) places constraints on the behavior of the system to help limit

the possible solutions. FBA constrains the model by using the fact that matter must be

conserved throughout the interactions. This means that the overall mass within the system

must remain consistent. The constraints limit the possible values of the parameters and aid

in solving the system for a data set.

Unfortunately, most biological systems are not very deterministic. There is a seemingly

random behavior that causes individual cells within clonal populations to behave differently.

The equations can be modified to include the stochastic behavior by including another term

representing the noise or randomness of the system. Adding another parameter for each

equation makes it much more difficult to uniquely solve the set of equations.

These models have been integral to my understanding of how the act of transcription

in one region can regulate nearby and overlapping transcription through a process known

as interference (Sneppen et al., 2005).

2.2.2 Statistical-based Modeling Methods

There is another set of modeling methods that focuses on the configuration of the system

as a whole. These configuration based modeling systems (also known as thermodynamic or

fractional occupancy models) have been developed to describe the positional binding config-

uration of proteins along a segment of DNA (reviewed in (Ay and Arnosti, 2011)). Briefly,

the models capture the probability of each configuration of bound components based on the

probability of each component binding to a segment of DNA. The binding probabilities are

calculated from the concentrations and thermodynamic binding probability of the compo-

nent and specific DNA sequences. The method is a simple three step process: 1) list all

the possible configurations of components bound to the DNA, 2) calculate the probability

of each configuration based on the statistical weight of each configuration compared to all
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Figure 2.4: Positional information described by Hidden Markov Models. Focus-
ing at the nucleotide level, the model captures the fact that each nucleotide can be in only
one of a limited number of states. (a) Conceptually, any nucleotide (i) can only be in one of
three states: unbound, bound to a glstf transcription factor (TF bound), or bound in a nu-
cleosome (Nucleosome bound). Competition between binding factors is determined by the
relative difference in probability of each factor binding to the DNA at that position. This
figure is adapted from Wasson et. al. (Wasson and Hartemink, 2009). (b) Practically, each
factor extends over multiple nucleotides, which is managed by the transition probabilities.
Nucleosomes are formed with 147 nucleotides (i .. i+146) and each transcription factor has
a unique interaction length (i .. i+WTF-1). The probability of transition depends on the
different affinity each factor has for the underlying sequence.

possible configurations, and 3) assign the expression level possible for each configuration

and predict expected expression based on sequence and concentrations of components.

Conceptually, these states define a model where the transitions between the states

depend on both the affinity of the component to the DNA sequence and its concentration.

As both nucleosomes and transcription factors bind to multiple nucleotide positions, the

actual connectivity between states varies depending on the identity of the component in

order to capture the specificity and length of binding.

Configuration based models of transcriptional regulation focus on the state of each

nucleotide of a given sequence. Currently, these models consider only nucleosome positioning

and transcription factor binding. With these two components, a given nucleotide can be

unbound, bound in a nucleosome, or bound in a particular transcription factor (Figure

2.4-a). Conceptually, these states define a model where the transitions between the states

depend on both the affinity of the component to the DNA sequence and its concentration
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(Wasson and Hartemink, 2009). As both nucleosomes and transcription factors bind to

multiple nucleotide positions, the actual connectivity between states varies depending on the

identity of the component in order to capture the specificity and length of binding (Figure

2.4-b). This additional complexity is still elegantly captured by a hidden Markov model

(HMM) and allows large DNA sequences to be quickly modeled on conventional computer

resources (Segal et al., 2006; Wasson and Hartemink, 2009). These models have proven to be

quite successful at elucidating key regulatory principles inherent in the competition between

nucleosome and transcription factors (Segal and Widom, 2009a). However, these methods

describe only the population averaged behavior of a DNA region and do not address the

inherent temporal variation in configurations within a single cell.

Another modeling method that has been used to capture the transitions between com-

ponent states uses the well studied formalism of Petri nets. Petri nets are an intuitive

representation of the biochemical networks that uses a graphical representation to describe

the transition between states as actions (Figure 2.5). Briefly, every action has inputs and

outputs, which are the components of the system. When molecules of all the inputs are

available, the action fires and consumes molecules of the inputs and produces molecules

of the outputs. During simulations, the molecule counts of each component is tracked as

actions consume and create molecules. Extensions have been added to standard Petri net

descriptions to account for time delayed or stochastic actions. Often the Petri net descrip-

tions are transformed into a set of differential equations for analysis. There are also a

number of simulators available that accept a Petri net and initial conditions to simulate the

system.

Petri nets can capture the same competition between components as the HMM by cre-

ating molecule definitions for each state of each nucleotide. Transcription factor binding is

represented as an action that takes a molecule of the transcription factor and a contigu-

ous set of unbound nucleotides as inputs, producing a set of transcription factor bound

nucleotides as output (Figure 2.5).
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Figure 2.5: Biological behaviors are modeled by computational components.
(a) The core of our modeling framework is to capture biological interactions, such as the
behavior of a transcription factor (TF) binding to the DNA (at rate Ka). (b) Abstract
computational description of the biological interaction using Petri net notation. These
descriptions are action based (blue rectangle), with the preconditions (circles listed above
the action for a molecule of the TF (red) and multiple positions (i ... i+WTF - 1) of unbound
DNA (grey)) required to apply the action, and the post-conditions (listed below the action
with DNA positions (i ... i+WTF -1) bound by that TF (pink)) that are true after the action
is applied at time t. The position specific scoring matrix (PSSM, example shown below the
TF as a sequence logo [99]) describes a specific TF’s affinity for DNA, which is used to
calculate the TF specific rate depending on the actual DNA being bound (KaTF

i ).

2.2.3 Chemical Reaction Modeling Methods

All biological behavior can be viewed as a result of a system of chemical interactions

between biological components. Transcriptional regulation is a result of all the reactions

that occur along a specific sequence of DNA, but each individual interaction of a compo-

nent can be described as a straightforward chemical interaction rule (concepts reviewed in

(Karlebach and Shamir, 2008) and (Faeder et al., 2005)). Each rule specifies the reactants

being combined at a specified rate to produce the resultants (Eq. 2.1). An arrow indicates

the direction of the interaction and the rate (Ka) of the reaction when the components are

available.

reactant+ ... Ka⇀ resultant+ ... (2.1)

In many cases, the resulting network of interactions can be converted into a set of dif-

ferential equations. It is important to point out that all of the methods described above
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(except Petri net models) for equation, statistical, and chemical reaction models, are popu-

lation averaged methods. They describe the average behavior of a cell within a population

of identically defined cells. They do not describe the behavior of any individual cell.

Simulations treat all components as continuous variables and represent the behavior

of a population of cells. These continuous values do not describe the discrete quantity

of components within a single cell and most likely do not describe the behavior of any

single cell within that population. The mass action assumptions of large quantities of

reactants does not hold when the number of molecules is small. Transcriptional regulation

within individual cells uses a small number of molecules of important components where

small changes in the quantity of these components have enormous influence in the cellular

behavior.

One of the advantages of modeling the individual interactions is being able to capture

the temporal dynamics of the system. Temporal dynamics models seek to capture the

key molecular interactions occurring during transcription process and typically describe the

behavior of molecules through a series of biochemical rules. In many cases, the Gillespie

stochastic simulation algorithm (SSA) can be applied to explicitly capture every interaction

in a discrete and stochastic simulation (Gillespie, 1976). The algorithm is a dynamic Monte

Carlo method that stochastically simulates a system of biochemical reactions to produce

one possible trajectory (solution) of the interaction rules. Multiple simulations can be run

to explore the distribution of trajectories given the stochastic nature of the system. This

approach has been used to model a variety of stochastic systems, from ecosystems to cells

(Black and McKane, 2012; Takahashi et al., 2004).

2.2.4 Stochastic Models at Single Nucleotide Resolution

Another method has recently emerged that uses the simplicity of defining rule based

systems to increase the model resolution to the nucleotide interactions (Roussel and Zhu,

2006; Ribeiro et al., 2009; Mäkelä et al., 2011). These models consider the DNA as a serial

sequence of nucleotides that interact with other components. Each nucleotide is defined

to have a set of states representing each interaction possible. For example, Rousell et. al.
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describes how modeling of the transcription process can be abstracted from the complex

interactions of many molecules in the biological process into a set of interactions for the

transcription stages of initiation, elongation, and termination (Roussel and Zhu, 2006).

Their model of prokaryotes defined a promoter and a gene region. The promoter must be

in an open conformation to allow the transcriptional machinery to bind (initiation). Once

the machinery is bound and activated, it can process each nucleotide in the sequence (elon-

gation) until it unbinds from the DNA (termination). This description provides a small

set of components (DNA, transcription factor, and transcriptional machinery) and interac-

tions (promoter activation and deactivation, transcriptional machinery binding, activation,

moving, and unbinding), which can easily be described with simple reaction rules.

The details of the system were enhanced to include transcription factor binding to the

promoter region for both initiation and repression, as well as detailed interactions of the

transcriptional machinery, including pausing, arresting, and premature termination (Ribeiro

et al., 2009). Another very important enhancement by Ribeiro et. al. was to model the

transcriptional machinery simultaneously bound to multiple nucleotides. This enables the

modeling of cooperative behavior between multiple copies of the transcriptional machinery

along one DNA segment.

These models of the prokaryotic transcription were further enhanced to include the

translation process that is simultaneously happening on the output from the transcription

process (Mäkelä et al., 2011). Makela et. al. created a more complex model of gene

regulator networks to produce both the RNA and the proteins from the sequence of DNA.

However, all these models are focused on the simple transcription activation of prokary-

otes. They are interested in the behavior of the protein levels in the system over time. They

have abstracted the behavior of the transcription factors because of the simple regulation in

prokaryotes has often evolved to have a single factor binding the promoter and sometimes

the promoter also contains a single repressor.

Transcriptional regulation in eukaryotes is both simpler and much more complex than

prokaryotes. The fact that transcription and translation occur independently in different
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cellular compartments keeps translation from affecting the transcription process. It is more

complex because there are many factors competing for the same DNA sequences and each

of the factors has a different affinity for each DNA sub-sequence. Each factor has a pre-

ferred series of nucleotides to which it binds, but will also bind with any DNA sequence.

The difference in binding at each site is in the residency time of the factor on the DNA.

Sequences closely matching the preferred DNA sequence will remain bound by the factor

longer than the non-preferred sequence sites. Besides the many transcription factors com-

peting for DNA in eukaryotes, there are histone proteins that bind with DNA to form

nucleosomes. Nucleosomes are used to package and protect the DNA from damage and

prohibits a transcription factor or the transcription machinery from binding.

2.2.5 Agent-Based Modeling Method

Despite the growing understanding of transcriptional regulation mechanisms, the com-

plexity of the transcription process is still a modeling challenge. Equation based models

do not provide insight into the behavior of individual cells or molecules within a biologi-

cal system. Observations represent the averaged value and assume the homogeneity and

well-mixed components. However, biological processes within single cells are not that well

behaved, with stochastic events and localized concentrations or behaviors of components.

Insight into the biological systems can be provided by modeling the individual biological

components. It is theoretically possible to model any system by defining the behavior rules

for all the individual components. This is the modeling concept used in molecular dynamics

where the behavior of molecules interacting can be modeled through rules for interactions

between every atom. However, depending on the size of the molecules and the purpose of

the model, this may not be computable or even useful. The behavior of the transcription

process components must be aggregated to keep the models computationally feasible, which

results in a loss of resolution for the model.

Agent based modeling is a relatively new modeling method that has become possible

with recent advances in computational power and memory capacity. An agent is a self con-

tained entity defined by a set of interactions and states. Each instantiation of a component
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individually maintains and controls its states and interactions. An agent’s autonomy allows

it to perform tasks within an environment without external control.

Agent based models are comprised of agents interacting in a simulated environment. By

specifying the low-level or local rules for each component, complex behaviors that have not

been explicitly programmed can be observed from the agent interactions. These emergent

behaviors are common within the real world. Flocks of birds or schools of fish have many

individuals behaving with simple interactions, but exhibit different behaviors when viewed

as a group.

The ability to simulate the actions of the individual components and observe the result-

ing system behavior over time allows the models to be useful tools for studying the behavior

of a complex system. These models can be used as a laboratory for exploring the effects of

changes to the behavior of an individual component within a complex system.

There are many advantages to the agent based models over equation based models:

ability to capture emergent behaviors, provide a method to study systems that are difficult

to experimentally validate, flexibility in describing the behavior of biological components

in different detail or timescales, deriving the model from fundamental behaviors of the

biological components (e.g. binding/unbinding of molecules), interactions are easier to

visualize and understand, and finally, the models are naturally stochastic as the interactions

can be based on probabilities or probability distributions.

The granularity of the agent based models comes at a cost. The computational resources

required to simulate these complex models are much greater than the equation based mod-

els. The system being modeled must be understood at greater detail to allow individual

behaviors to be described. A limited knowledge of component kinetics or limited computa-

tional resources require modelers to make trade-offs in the detail of the models while still

addressing the questions being asked.
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CHAPTER III

DYNAMIC TRANSCRIPTION MODELING FRAMEWORK 1

3.1 Introduction

Transcription is the biological process of reading a DNA template and producing an

RNA copy of that template. Transcriptional regulation is the system behavior arising from

the interaction of numerous regulators with DNA, which allows transcription to occur. In

this work, I have developed a new modeling framework that can automatically generate

rule sets describing the possible molecular interactions implied by a given DNA molecule to

produce a model that captures both the stochastic and dynamic behavior of the complex

system known as transcriptional regulation.

The central dogma of biology is that DNA is used to produce RNA copies that in

turn are used to produce the proteins described by the DNA. Biological textbooks usually

show this as a linear process from DNA to RNA to protein (Figure 1.2-a). However, the

process is a never ending cycle as the proteins generated will influence the state of the DNA.

Therefore, I have redrawn the dogma as a circular process that includes feedback from other

processes on the input to the transcription process (Figure 1.2-b). See section 1.5 for more

detailed background on the biological processes and the individual components involved in

transcriptional regulation.

The process of transcription is regulated by complex interactions of the DNA with

binding proteins, the RNA products, and even the transcription process itself. This complex

system of transcriptional regulation produces precise gene expression at specific times and

locations. Experimental studies of gene expression have unlocked the function of many

proteins involved in regulating the transcription process and new experimental techniques

are being developed to understand transcriptional regulation at unprecedented temporal

and molecular detail down to single-cell resolution. (section 1.5.2). Yet, much is still to be

1Part of this work is currently in the review process for IEEE Transactions on Computational Biology
and Bioinformatics as ”A modeling framework for generation of temporal and positional simulations.” This
work comprises Aim 1 of a National Science Foundation grant (ABI 1262410) on which I was a co-author.
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learned because the behavior of the system cannot be explained solely by the behavior of

the individual components.

There is growing evidence that transcription emerges not only from the behavior of

individual components, but rather from the collective behavior (including competition and

cooperation) between the components (section 1.5.2). DNA undergoes millions of inter-

actions every second, constantly changing the configuration of the molecular components

bound. Transcription is simply the controlled recruitment and processivity of the tran-

scriptional machinery. Regulation of the transcription process involves four major classes of

components: the DNA, transcription factors, nucleosomes, and the transcriptional machin-

ery. These factors interact in complex ways, both cooperatively and competitively, to induce

transcription. It is the stochastic, temporal, and spatial interactions of these regulators that

control the transcription process in each individual cell (Coulon et al., 2010).

Encapsulating our understanding of these interactions into a computational model is

integral to understanding transcriptional regulation (Lander, 2010). See Chapter II for a

more detailed review of the modeling perspectives and computational modeling methods.

Models allow us to explore a system, create testable hypotheses, and identify when key

details are missing in our current knowledge. To date, most modeling frameworks for tran-

scriptional regulation have either focused on the detailed molecular behavior of a specific

regulator or the interaction of a small subset of regulatory components (Barnes et al., 2011;

Cantone et al., 2009; Greive et al., 2011; Kim and Gelenbe, 2012; Lubliner and Segal, 2009;

Ribeiro, 2010; Segal et al., 2006). Few models have approached the problem of simulta-

neously capturing the behavior of all the major regulator classes. In part, this is because

most models either focus on the positional information of each component (Segal et al.,

2008; Wasson and Hartemink, 2009) or the temporal behavior of their inherent dynamics

(Ribeiro et al., 2009; Roussel and Zhu, 2006). Integrating both the positional information

and temporal information often leads to computationally expensive models. As experi-

mental techniques continue to improve, modeling approaches must also evolve to represent

increasingly realistic molecular details while still remaining computationally tractable. We
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need new methods to construct biologically realistic computational models that capture not

only the positional binding of transcription factors and nucleosomes, but also the underlying

temporal dynamics, such as the behavior of transcriptional machinery during initiation and

elongation.

3.2 Contribution

This section reiterates the contributions for this chapter. See Section 1.3 for a complete

list of my contributions.

• I created a modeling framework to automatically generate a model com-

prised of a collection of biochemical based rules describing the individual

behavior of each model components for any given sequence of DNA. The

generated models capture the details of interactions at nucleotide resolution, which

allows the behavior of individual cells to be captured. The models can describe both

steady state processes, such as transcription factor binding, and dynamic processes,

such as the transcriptional machinery moving along the DNA. These generated models

capture both the spatial and temporal behavior of the system being modeled.

• My framework allows the models to not only capture the population av-

eraged steady-state behavior, but also capture the dynamic behavior of

individual components, as well as the emergent behavior arising from the

components working together in a coordinated system. My framework focuses

on modeling at the nucleotide level within single cells. Instead of providing a single

population averaged result as current modeling methods produce, I can capture the

progression over time through different configurations of factors bound to the DNA

in a single cell.

• The interactions between components can be specified using spatially ab-

stract descriptions. The abstract descriptions of each component interaction is

described independently of the actual DNA sequence or positions. Each interaction

description is applied to each position of the given DNA sequence to generate the

model. Details of the interaction, such as an interaction rate, can be tied to a func-

52



tion based on the local sequence at each position. Each abstract interaction can be

described using a graphical form.

• The DNA sequence is not a single molecule or component, but many in-

terdependent nucleotide components. The framework is designed to consider

each individual nucleotide as its own component. Each nucleotide is not completely

independent, as interactions that occur at a neighboring nucleotide have a large effect

on the behavior on other nearby nucleotides. However, the extent of the effects are

limited in scope at any specific nucleotide position and therefore makes the simulation

of interactions along a large DNA segment trackable.

3.3 Previous Work

The different modeling perspectives and methods are discussed in greater detail in

Chapter II. Here I briefly introduce the previous work on which I have built my framework.

Traditionally regulation of transcription has been modeled as gene regulatory networks

(GRNs). These graph based systems capture the correlation between levels of one gene

on the levels of other genes. Many methods exist for capturing the networks from the

experimental data (reviewed in (Hecker et al., 2009)). These models answer the question

of ”which” genes are affected by change in levels of another gene. They cannot answer the

questions of ”why” or ”how” the change in the level of one gene can affect levels of other

genes. To answer these types of questions, the level of detail in the model must be increased

to examine the mechanisms of transcriptional regulation.

Transcription in eukaryotes is complex with many factors contributing to the regulation

of transcription at each gene promoter. Each factor has different affinities for different

sequences of DNA. Factors bind to different lengths of the sequence and may be competing

for overlapping sections of the sequence, but only one factor can be bound to each nucleotide

of DNA at any one time.

A new class of models have recently emerged to capture the complex configurations

of regulators bound to the DNA at nucleotide resolution. These models are designed to

either capture the probability of all the different configurations using HMMs (Wasson and

53



Hartemink, 2009; Segal et al., 2006) or capture the molecular interactions occurring along

DNA (positional) throughout time (temporal) (Coulon et al., 2013) using stochastic simu-

lations.

Configuration based modeling systems have been developed (concepts reviewed in Segal

and Widom (2009a)) to describe the positional binding configuration of proteins using ei-

ther probabilities or thermodynamics. Currently, these models consider only transcription

factor and nucleosome binding. With these two components, a given nucleotide can be un-

bound, bound in a nucleosome, or bound by a particular transcription factor (Figure 2.4).

Conceptually, these states define a model where the transitions between the states depend

on both the affinity of the component to the DNA sequence and its concentration (Wasson

and Hartemink, 2009). As both nucleosomes and transcription factors bind to multiple

nucleotide positions, the actual connectivity between states varies depending on the iden-

tity of the component in order to capture the specificity and length of binding. This is

captured elegantly by an HMM and allows large DNA sequences to be quickly modeled on

conventional computer resources (Segal et al., 2006; Wasson and Hartemink, 2009). These

models have proven to be quite successful at elucidating key regulatory principles inher-

ent in the competition between nucleosome and transcription factors (Segal and Widom,

2009a). However, these methods describe only the population averaged behavior of a DNA

region and do not address the inherent temporal variation in configurations within a single

cell.

Another class of stochastic models of gene regulation are just emerging (Mäkelä et al.,

2011; Ribeiro et al., 2009; Zhu et al., 2007) that are specifically tailored to deal with complex

configurations of regulators at individual loci within single cells. These models also seek

to capture the molecular interactions occurring along DNA (positional) throughout time

(temporal) using stochastic simulations.

One set of models focuses on the behavior of the transcriptional machinery in bacteria

(Roussel and Zhu, 2006; Ribeiro et al., 2006). These model a generic DNA sequence con-

taining a promoter and gene region. The transcriptional regulation in the highly evolved
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promoters of bacteria usually have a single transcription factor that will activate transcrip-

tion of the gene. Only when the factor is bound can the transcriptional machinery bind

and progress through the initiation, elongation, and termination stages. These positional

and temporal models capture competition at the all nucleotides of the promoter region by

creating multiple states for the whole promoter. The tri-state promoter can be unbound,

bound by activator, or bound by repressor.

Because the framework of these rule based systems is flexible, it is relatively easy to

extend the models. Extensions have created more complex details of the transcription

process, such as transcriptional machinery pausing, arrest, and early termination or have

added more processes. Including processes such as the translation in the models easily

extends the model’s coverage to more biological behavior (Mäkelä et al., 2011).

However, there is a big drawback to these rule based models. They are computationally

expensive, as every molecule requires rules to describe the set of all possible interactions.

This leads to a combinatorial explosion of possibilities as the number of components in

the model increases. This is particularly true for the central molecule of transcriptional

regulation: DNA. The models are explicitly built to abstract the promoter region of bacteria

and ignore the diversity of DNA binding factors, which increase the complexity of regulation

found in eukaryotes.

Another drawback is the manual creation of models for every gene of interest. While this

is simple to manually manage models with a small set of genes and transcription factors, it

becomes tedious, monotonous, and error prone when many factors are required to regulate

each gene. Models containing many genes are required to understand the system behavior.

Manual curation of the models is no longer feasible for creating or maintaining models for

explicit sequences of genomic DNA.

I use the Petri net formalisms to describe the individual interactions of each component.

Stochastic Petri nets have been utilized successfully to model diverse biological processes,

including metabolic networks, signaling pathways, and gene regulatory networks (Lei, 2011;

Genrich et al., 2001; Mura and Csikász-Nagy, 2008; Ovacik and Androulakis, 2008; Ruths
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et al., 2008). The focus of this work is on the generation of the biochemical rules and not

on the use of Petri nets as a description language.

3.4 Methodology

3.4.1 Framework

I sought to construct a modeling framework that integrates the sequence dependent

positional information of DNA binding factors with the inherent temporal dynamics of

the transcriptional machinery. The configuration based modeling paradigm can capture

steady state positional interactions, but must be extended to capture dynamic events, such

as the movement of the transcriptional machinery. These dynamic events are not only

positional dependent, but also temporally dependent (Figure 3.1). For example, consider

polymerase traversing DNA in the process of transcription. The location of polymerase is

time dependent and its ability to move along the DNA is influenced by the state of the

nucleotides ahead (Kireeva et al., 2005).

Capturing the temporal and positional dimensions simultaneously within the HMM

framework leads to an explosion of alternative states because each possible movement in

the temporal dimension impacts multiple positional states (Figure 3.2). Consequently, I

sought an alternative representation that simplifies capturing both dimensions.

In reality, DNA is a chain of nucleotides. The key observation is that individual DNA

binding proteins interact with a short contiguous string of bases. Because of steric con-

straints, only a single binding protein can interact with a given nucleotide at a given time.

Therefore, by treating DNA not as a single molecule but as a string of entities, I can decou-

ple the actions of one DNA binding protein from another, so long as they interact sufficiently

far away from each other.

Where the factors interact along the DNA is determined by the sequence. Each of

the DNA binding factors has specific affinities for different sequences. The locations and

probability of each factor binding can be calculated using the PSSM for that factor.

The rule based models capturing transcriptional machinery dynamics can be extended

to include the DNA binding factors. Like the HMM models, the binding positions and the
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Figure 3.1: Biological behavior can be modeled by action oriented local de-
scriptions. (a) Biological detail of individual factors, such as transcription factors (TF)
and the transcriptional machinery (TM), has been well studied experimentally. Each bi-
ological component interacts with a small region of the DNA molecule. (b) Creation of
a positional and temporally realistic model can be achieved by focusing on the actions of
individual components (DBF-a, DBF-b). These actions have a localized effect, influencing
a finite number of nearby nucleotides within the underlying DNA. My framework captures
the interactions between individual computational components, such as the binding and un-
binding of transcription factor (TF, DBF-a) to consecutive DNA nucleotides (gray circles)
and the movement of the transcriptional machinery (TM, DBF-b) along the DNA.

probability of binding can be calculated for any given DNA sequence. These can be used

to generate the rules for binding.

3.4.2 Representation

My framework uses the rule-based methodology that defines all the interactions between

the DNA and factors as chemical equations. Equations 3.1 and 3.2 show a reversible inter-

action as two interactions: the first combines two components to create another component

and the second is the opposite action that separates the components back into individual

factors. Each of the interactions has a rate (Ka and Kd) at which that interaction occurs.

These actions need to be defined for every interaction possible between components of the

model.

A+B
Ka

⇀ C (3.1)

C
Kd

⇀ A+B (3.2)
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Figure 3.2: Adding temporal information to the positional HMM requires si-
multaneous transitions at multiple states. At any point in time t, the configuration of
factors bound to the DNA places each nucleotide i in a single state, as described in Figure
2.4. When a component moves through time, such as the movement of the transcriptional
machinery along the DNA, this requires the simultaneous transition of two positions, i and
i+WTM, in the positional HMM.

In my modeling perspective, the rules define transitions of the nucleotides from one

state to another. To build a realistic model, every transition possible must be defined for

every nucleotide position. This would limit the size of the models, if they are built by hand.

But, the interaction rates can be calculated for each position in the sequence and the rules

can be automatically generated.

I use Petri nets to focus on describing processes from an event centric perspective

(Figure 3.3). This shifts the focus squarely to the dynamic temporal events permissible

for a particular component, while still allowing the events to be decomposed into their

local positional effect. The use of the graphical representation creates easy-to-understand

interactions and still allows the framework to be highly flexible and extensible.

The full set of abstract rules (described in Appendix 1) are applied to a specific DNA

sequence to obtain a complete set of model rules that can be simulated by off-the-shelf

stochastic simulation engines. Each temporal event, such as binding, depends on the current

state or local configuration of the DNA (preconditions). Petri net figures in the appendix

also specify the positions of the DNA influenced by each rule (its span). Execution of

an event results in the described change to the local configuration. To create a runnable

simulation, these abstract descriptions are applied to a specific DNA sequence to generate

a set of rules defining the permissible molecular interactions. An additional advantage of
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Figure 3.3: Petri net description of transcription factor binding. This Petri net
representation describes a binding action that takes a transcription factor and unbound
DNA positions to produce a set of TF bound positions of DNA. The actions in a Perti net
are represented as rectangles and the components as circles. Arrows from a component into
an action are the required inputs for that action. The arrows from an action to a component
are the output components of the action. Each TF binds to consecutive nucleotides for a
length matching the area occluded by the TF. This binding action consumes a molecule of
the TF and unbound DNA for each occluded position. When the action is performed, it
produces a molecule of TF bound DNA for each position.

using simulations is it allows us to visualize the configuration of each position at each time

step, as well as infer the dynamic movement of factors along the DNA (Figure 3.7).

3.4.3 Implementation

The representational framework defines a set of interaction rules that are independent

of the DNA being modeled. In this section, I describe how to apply the rules to a specific

DNA sequence, simulate the resulting system of interactions, and analyze the results. The

complete overview of this process is shown in Figure 3.4.

3.4.3.1 Stochastic Rule Builder

The stochastic rule builder (SRB) converts the abstractions into a runnable set of rules

specific to a particular DNA sequence. Given my framework, the creation of a specific

executable model becomes a conversion process, similar to a compiler. The SRB takes as

input the specific DNA sequence, a configuration file, and the necessary parameters to build

a complete set of rules for the simulator (Figure 3.5). The SRB utilizes the generic action

descriptions to generate rules in the form of chemical reactions where each rule specifies

a set of reactants that are transformed at some rate (Ka) to produce a set of resultants

(Figure 3.3).
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Figure 3.4: Flowchart depicting the Stochastic Rule Builder (SRB) and visu-
alization pipeline. The SRB encapsulates the abstractions (Petri net descriptions, Ap-
pendix I) for all the interactions and applies those interactions to specific sequences of DNA
(grey bars) using the user provided component parameters (input parameters). Output of
the SRB is both a set of reactants representing all the different states of the components
and the rules using those reactants. The rules are simulated using an off-the-shelf simula-
tion engine, which produces an output file containing each reactant’s molecular count at
each time step. These molecular counts are interpreted by my Visualizer to generate the
configuration of the components along the DNA at each time step (visualizer output).

For each generic component, the SRB creates sequence specific rules for each nucleotide

of the sequence. Consider a transcription factor as an example. A transcription factor has

particular sequences to which it preferentially binds, described by a PSSM. This matrix

specifies the number of positions, as well as the nucleotides that are preferentially bound at

each position. At every position of a specified DNA sequence, the SRB utilizes the PSSM to

calculate how well the transcription factor could bind. Figure 3.6 shows an abstract rule for

the binding of a transcription factor to the DNA. When a rule is generated for the binding

of this transcription factor to a given DNA position, a binding rate (Ka) must be specified.

The theoretical rate (KaTF1
i ) for a specific sequence can be defined as a function that takes

into account the factor’s concentration (CTF1), its strength of binding the specific sequence
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Figure 3.5: The Stochastic Rule Builder (SRB) generates a set of biochemical
rules for a given DNA sequence. The logical flow (on the left) shows how the SRB
applies its internal Petri Net representations of actions to a specific DNA sequence to
produce an output file containing the reactants of the model system, as well as the rules
for interactions among those reactants. Each set of possible actions (the Petri Nets) are
applied at every position along the DNA, as depicted on the right. In this case, the rules
are generated for an off-the-shelf simulation engine Dizzy (Ramsey et al., 2005).

(STF1
i , inferred from the PSSM), and a generic association rate (KTF1

g ) (Figure 3.6 b). The

SRB applies a similar process to the nucleosome abstraction using the nucleosome affinity

scoring matrix (Wasson and Hartemink, 2009) to define sequence preferences. It should

be noted that the concentration is not used in specifying the rate for each rule generated,

because the simulation engine uses the supplied rule rate for each set of molecules available

at any time point in the simulation.

Each rule generated by the SRB uses a set of reactants and resultants, which define the

possible states of each nucleotide. Each nucleotide can only be bound by a single factor at

a given time, which is a temporal constraint in the framework that is based on biophysical

constraints. The SRB must ensure that each bound state of the nucleotide is mutually

exclusive by augmenting the state names with the bound factor name. This is conceptually

similar to each nucleotide having a limited number of possible states in the HMM formalisms

(Figure 2.4).
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Figure 3.6: Generation of the biochemical interaction rules requires interaction
rates to be a function of the specific sequence. (a) The biochemical interaction rules
generated by the binding of a specific transcription factor (TF1) at position i of a specific
DNA sequence (DNA i + .. + DNA i+W TF-1) to produce bound factor (TF1 bound +
.. + TF1 bound+W TF-1). (b) The position and TF specific reaction rate (KaiTF1) is a
function of the transcription factor concentration (CTF1), the transcription factor’s affinity
for a specific sequence of DNA (SiTF1) and the generic association rate (KgTF1) of the
transcription factor.

I have also extended the behavior of the transcriptional machinery. In previous rule

based models the machinery was modeled in only a single direction along the DNA and

ignored the possibility of transcription along the opposite strand. My framework specifies

the interactions for transcription in both directions. This includes the behavior of the

transcription machinery moving along the DNA, encountering DNA binding factors, and

other transcription machinery moving in the opposite direction (known as transcriptional

interference).

The transcriptional machinery is capable of loading onto DNA and starting transcription

at any position. However, it also traverses DNA and terminates transcription at given rates.

I have set the default rates for transcribing based on the in vitro experimental data (Tolić-

Nø rrelykke et al., 2004). In addition, there are cases where specific transcription factors

can bind to DNA and recruit the transcriptional machinery to a nearby position (Bryant

and Ptashne, 2003). For example, TATA binding protein (TBP) recruits the transcriptional

machinery to a DNA position roughly 35 bases downstream of its position. Therefore, the

SRB allows each transcription factor to recruit the transcriptional machinery to a position

at a specified distance (shown in appendix Figure A6).

An interesting modeling issue arises when the transcriptional machinery encounters ob-

stacles (other components) during its movement. Given the stochastic nature of factor bind-

ing, the transcriptional machinery could just wait until the obstacle removes itself. However,
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it is more likely that the transcriptional machinery actively removes obstacles (Schwabish

and Struhl, 2004). Consequently, I allow the transcriptional machinery to modify the evic-

tion probabilities of a protein when it encounters an obstacle. When the obstacle is another

transcriptional machine traversing in the opposite direction, this results in transcriptional

interference (Gullerova and Proudfoot, 2010; Sneppen et al., 2005). For simplicity, in my

current implementation transcription will abort in both directions when interference occurs.

3.4.3.2 Visualizing Simulations

The models generated by SRB are simulated using DIZZY (Ramsey et al., 2005), which

produces an output containing all the molecule counts of each component state at each

time step in the simulation. The number of states generated can quickly grow into the

thousands for short sequences. The counts must be interpreted to understand the behavior

of the system. I created a second application to visualize the results of simulation and collect

statistics to be reported. The simulation results are interpreted to show the configuration

of factors bound to the DNA at each time point (Figure 3.7). The visualization application

also calculates the occupancy of factors by summarizing the percentage of time each factor

occupies an individual nucleotide.

3.4.3.3 Coping with Parameters

An inherent obstacle to my approach is the large number of necessary parameters (Ta-

bles 3.1 and 3.2). Whenever possible, I obtain the default parameters from the literature.

For example, my modeling of the yeast genome uses protein counts obtained from Ghaem-

maghami (Ghaemmaghami et al., 2003). The PSSMs for transcription factors were obtained

from MacIsaac (MacIsaac et al., 2006) and Badis (Badis et al., 2009). Nucleosome affinity

is from Kaplan (Kaplan et al., 2009) and Wasson (Wasson and Hartemink, 2009). In all of

these cases, the datasets were generated from population-averaged experiments, typically

with cells grown in standard yeast media (YPD) and measured during log phase growth.

Therefore, they are considered baseline default values that can be overridden by the user in

my modeling configuration file. User specified custom motifs are also supported, allowing

newly discovered proteins to be quickly incorporated.
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Figure 3.7: Visualizing the DNA configurations at each time step of a simula-
tion.The state of the simulation is recorded for each time step of the simulation (y-axis)
and can be interpreted in light of my Petri Net descriptions of actions to determine the
current configuration of factors bound to the DNA (x-axis). Here I show an example of a
simulation that included 3 transcription factors, nucleosomes, and the transcriptional ma-
chinery. (a) A simple ASCII representation where each character summarizes 10 nucleotides
of the DNA. ASCII symbols are: * bound transcription factor; ==} bound transcriptional
machinery (position not transcribed); ==] bound transcriptional machinery (position tran-
scribed, waiting to advance); (.............) bound nucleosome. Nucleosomes are further labeled
(binding (b), unbinding (u), or stable (n)) to reflect the intermediate states of nucleosome
formation. When the image is viewed as a whole, scanning from top to bottom, I observe
movement of a single transcriptional machine along the DNA and pausing at a nucleosome
with perhaps strong sequence affinity. (b) An alternative representation of the ASCII art,
redrawn into cartoon representations of the DNA configuration in relation to a given gene
region (blue rectangle). Each representation of an associated time step shows triangular
transcription factors (in red and orange), blue oval nucleosomes, and a green teardrop for
the transcriptional machinery.

The temporal events also require rates (Figure 1.5). In general, these rates are largely

unknown and currently difficult to estimate from the literature. While recent advances

in experimental approaches (Coulon et al., 2013) show tremendous promise in rapidly ad-

dressing this parameterization issue, currently many of the kinetic parameters have not

been experimentally determined. Some of the factor ‘on’ rates are known, but very few ‘off’

rates (or residency times) are known (Lickwar et al., 2012b). I estimate these rates by tying

them to other well-studied parameters. Experimental studies indicate that the temporal

information is unlikely to be fully independent of the positional information, as the sequence

being bound influences the kinetics of the reaction (Lickwar et al., 2012b; Lieb et al., 2001).

64



Therefore, I assume that higher affinity sites will also have higher residency times (Lickwar

et al., 2012b). A site with strong sequence preference will bind more frequently and for a

longer period of time. These rates can be overridden by user defined global rates or data

derived position dependent information provided in the configuration file.

3.4.3.4 System Overview

The SRB generates potentially thousands of chemical reaction rules for small DNA

sequences. These rules can then be fed to off-the-shelf simulators (Figure 3.4). In my

case, the SRB output is formatted for the third-party stochastic simulation engine Dizzy

(Ramsey et al., 2005). Briefly, I use the Next Reaction Method (Gibson and Bruck, 2000),

which is an extension of an exact stochastic simulation algorithm (Gillespie, 1976). In

these simulations, the state of the system is represented by the set of current molecule

counts of each reactant and the time until each of the reactions will occur. The times are

selected from the probability distributions for each reaction, which are based on the rate of

the reaction and the current molecular counts of the reactants. After initialization of the

internal data structures, the algorithm repeatedly selects the next reaction to occur and

applies that reaction. Each reaction changes the molecule counts, which may affect the

probability distribution of many other reactions using the same reactants. The algorithm

recalculates, as needed, the time to next reaction for all the affected reactions. As many

independent reactions could occur nearly simultaneously, many reactions may be applied

during each time step. At the end of each time step, the current molecule counts for all

reactants are reported. The algorithm continues to apply reactions until the user specified

number of time steps has been reached.

In my models, each possible state of a nucleotide becomes a possible reactant. The size

of my models therefore depends on the size of the DNA segment being modeled and the

number of different protein components being used. Because each action influences only

a localized span of nucleotides, the worst case is always a linear growth in the number of

rules (Figure 3.8). When all possible rules are applied at every position, this growth is still

substantial (Figure 3.9).
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Table 3.1: Modeling parameters for SRB.

Attribute Name Example of value expected Notes

SRB parameters

MODEL NUCLEOSOME 1 If non-zero, add nucleosomes to the model.

MODEL RNAP 0 If non-zero, add RNAP complex to the model.
MODEL TATA 0 If non-zero, add TATA to the model. TATA recruits and stabilizes

the RNAP complex.

MOTIF THRESH 0.8 Threshold (percent of max PSSM score) that must be met to gen-
erate TF rules at a position.

GROUPING 10 Number of nucleotides being grouped into a single position within
the model.

DNA parameters

FILE DATA/S288C R64.fasta FASTA formatted file containing DNA sequence.

CHR chrVII Chromosome within FASTA file.

START 140000 Start position within chromosome.

END 146000 End position within chromosome.

LENGTH 6000 If END not specified, LENGTH nucleotides from the start position
is used.

Transcription Factor param-
eters

TF LIST REB1, MCM1, RSC3 Names of TFs to include in the model.

MOTIF FILE DATA/yeast.tamo (Gordon et al., 2005) Specify the file to be used to define motif.

MOTIF THRESH 0.7 Threshold that must be met to generate TF rules at any position.
Overrides the global SRB settings.

PROTEIN COUNTS YeastProteinCounts.txt (Ghaemmaghami et al., 2003) File from which default molecule
counts are initialized.

LOCAL CONCENTRATION 1 Adjust the local concentration of every component [0..1].

OCCLUSION 5 3 Every TF has a footprint along the DNA extending beyond the mo-
tif. I assume there could be a non-symmetrical footprint. These set
the generic defaults for used for all TFs in the model. Number of
nucleotides beyond the 5’ end of the motif match.

OCCLUSION 3 3 Number of nucleotides beyond the 3’ end of the motif match.

Parameters below are repli-
cated for each TF:
INITIAL COUNT 4 Number of TF complexes in the model

MOTIF THRESH 0.8 Threshold that must be met to generate this TF’s rules at a position.
Overrides the global SRB and TF settings.

MOTIF TGTNNNNNNNNACATCA Explicitly defines motif for a TF. (MOTIF THRESH is ignored)

MOTIF PWM DATA/PWM/Gal4.pwm (Gordân et al., 2011) Loads motif from given PWM file.

OCCLUSION 5 3 Number of nucleotides beyond the 5’ end of the motif match. Over-
rides the generic TF default value.

OCCLUSION 3 3 Number of nucleotides beyond the 3’ end of the motif match. Over-
rides the generic TF default value.

ON RATE 0.965

OFF RATE 0.035

RNAP EVICTS 1 If non-zero, add TF eviction by RNAP complex to the model.

RNAP RECRUIT 0 If non-zero, the TF recruits the RNAP complex.

RNAP OFFSET 30 If TF recruits RNAP, the offset from the TF where RNAP is bound.

RNAP RECRUIT RATE 0.00001 Rate to recruit the RNAP complex to TF bound.
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Table 3.2: Modeling parameters for SRB (cont).

Attribute Name Example of value expected Notes
Nucleosome parameters

N HISTONES 100000 Number of histone complexes in the model.

SIZE 147 Size in nucleotides of the complete Nucleosome complex.

MIN LINKER SIZE 18 Size in nucleotides of the minimum space between nucleosomes.

ON RATE 0.0001

OFF RATE .1

ABORT RATE 1000.

NUC PROB FILE DATA/experimental.txt Use the experimental data to set the relative probability at each
position.

DI NT NUC PROB FILE dinucleotide probs.txt Use the dinucleotide probabilities to set the relative probability at
each position.

Transcriptional Machinery
parameters

INITIAL COUNT 4 Number of TF molecules in the model.

RNAP SIZE 25 Size in nucleotides of the RNAP complex.

N INIT STAGES 5

INIT RATE 0.1

INIT ABORT 0.002

ON RATE 0.05

OFF RATE 0.0008

TRANSCRIPTION RATE 30

POSITION FILE DATA/experiment.bed File containing positions of initiation.

POSITIONS [141850,w],[144100,c] List of explicit positions at which initiation occurs (only used if
POSITION FILE not specified).

The number of rules produced can be reduced by the application of biologically realistic

and reasonable heuristics. For example, while in theory a transcription factor can bind to

any location, it is anticipated that significant interactions will only occur with sequences

with reasonably good fit to the PSSM (Qi et al., 2006). Applying a score cutoff to the

PSSM reduces the number of rules significantly, but makes the number of rules strongly

dependent on the underlying sequence. I also optionally allow rules to be applied to groups of

nucleotides, a heuristic that drastically reduces the number of rules produced for a specified

length of DNA, but also reduces the precision of the simulation. My default system typically

generates hundreds of thousands of interaction rules for a typical gene and millions of rules

for chromosomes.

There are practicalities with using a simulation method that must also be considered.

First, I initialize all the DNA states as unbound and allow the system to populate binding
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Figure 3.8: Each DNA position influences a limited number of rules.Focusing at
the nucleotide level, the model captures the fact that each nucleotide (grey circle) can be
in only one of a limited number of states. (a) Each abstraction (orange box) has a span of
nucleotides that are influenced when the Petri net is applied at position i. (b) Therefore, a
chance at any position i, influences a fixed window size [i-size,i+size] of nearby nucleotides,
defined by the span of the largest abstraction.

factors until a quasi-equilibrium is reached. Through observation, I have found 500 steps to

be sufficient for this burn-in period. Each simulation is run for a minimum of 8000 steps,

to allow for sampling of a variety of pathways. Finally, because I frequently simulate small

sections of DNA, there are edge effects. The behavior of the model is altered at the edges

of the model (beginning and end of the DNA region) due to an absence of defined rules for

positions outside the modeled region. The natural barrier of the edges of the region can be

felt for a distance along the DNA. In my experience, padding the edges by two thousand

nucleotides, a distance in excess of three times the largest rule span, reduces edge effects.

The stochastic simulation engine, Dizzy, requires the rules and reactants description file

as input, as well as specification of the method, number of time steps, and the sampling rate.

Each simulation results in a different series of events and describes one possible trajectory of

the given DNA through time. Dizzy’s implementation is a Monte Carlo implementation and

scales logarithmically with the number of rules (Ramsey et al., 2005). While I have chosen

Dizzy because of its availability and relative ease of use, the SRB output could easily be

revised to use any off-the-shelf SSA simulator (FERN-Erhard et al. (2008), NFsim-Sneddon

et al. (2011), DYNSTOC-Colvin et al. (2009)).

Finally, the output results of the simulations can be summarized or visualized. Running

the simulation multiple times or for an extended period of time will stochastically select
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Figure 3.9: Model size grows linearly with the size of the DNA sequence being
modeled.The main graph shows the maximum size of models generated for 124 transcrip-
tion factors (TFs) (green), a set of 4 TFs (Reb1, Rim101, Ste12, and Tec1) (red) and
with only the nucleosome and transcriptional machinery (TM) interactions being modeled
(blue). These worst-case scenarios generate every rule at every position for every TF, even
when the TF binding would only be weak, rare and transient. By default, my system only
generates rules when the likelihood of binding exceeds a strength threshold filter, resulting
in much smaller models even when using all 124 TFs (purple). The inset graph is a close
up of the deviation of actual from the theoretical as the length of the DNA increases.

a different sequence of events, leading to alternative trajectories. Combining many time

points allows for summary statistics, such as the distribution of binding configurations, to

be obtained and compared to experimental data. In addition, the simulation results can

be interpreted in light of the possible actions described by my Petri nets, allowing for the

visualization of the configuration of each position at each time step, as well as inferring the

dynamic movement of factors along the DNA (Figure 3.7).

3.4.4 Modeling Details

Transcriptional regulation is inherently dependent upon the biochemical interactions of

many different molecules, but robust enough to handle the stochastic fluctuations inherent

in a molecular system. The resulting cell-to-cell variability is likely fundamental to most,

if not all, molecular cellular processes (Huang et al., 2009; Schwabe et al., 2011). I wanted

to develop a quantifiable, interpretable, and flexible model of transcription regulation. My

framework strives to capture the distinct behaviors and interactions among the components
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being modeled as abstract rules that may be applied to any DNA sequence. These abstract

rules are then applied to the specific DNA sequence to obtain a complete set of model rules

that can be simulated by off-the-shelf stochastic simulation engines. Here I describe, in more

detail, the Stochastic Rule Builder (SRB). The SRB applies the abstractions (Appendix 1)

to a specific DNA sequence, resulting in a set of rules defining the permissible molecular

interactions on that DNA sequence.

Most biochemical models have many molecules of each reactant interacting. But, in my

generated models most of the reactants have a molecule count of zero because there is only

one molecule being shared among the set of reactants for a single position. Consequently,

my models are very sparse as most of the reactions specify mutually exclusive states of each

particular nucleotide of DNA. This implies that most of the reactions within the model are

not applicable at any time. Therefore, for a given sequence of unbound DNA, the simulation

is selecting one of the possible reactions available at those positions and changing the single

molecule counts from the unbound DNA reactant to the bound by a specific component

reactant. Application of any reaction to the DNA immediately blocks all other previously

possible reactions (implementing competition). Now the only reactions available at these

positions are reactions based on that bound component. My models can be viewed as two

models in one:

1) when DNA is unbound, the rules are using population averaged behavior of multiple

molecules interacting within the system;

2) once a generic molecule has bound to the DNA, the model switches to modeling the

specific behavior of that component bound to DNA.

3.4.4.1 States in the Model

The framework must apply all the action abstractions to a specific DNA sequence and

insure that the generated rules all reference the correct nucleotide positions and states.

Here I discuss the mechanism for generating the unique state names, the set of actions

currently being modeled, and the method for calculating the interaction rates when they

are dependent on the specific DNA sequence.
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The DNA is central to my modeling, as it is also central to transcriptional regulation.

While the concentration of all other components varies based on condition or cell type, the

number of copies of the DNA per cell is largely defined by the organism and tissue identity.

The DNA encodes the instructions for when, where, and how much of each transcript to

produce, while the other components bind with the DNA to carry out those instructions.

My models focus on the behavior of individual nucleotides, which can be in only a small

number of different states. I must represent the state of each DNA nucleotide as a unique

reactant in my biochemical interaction system. Each nucleotide can only be in a single state

at a given time and my framework must maintain this constraint while building the rules

for a specific model. I accomplish this by generating unique, but deterministic, names for

each state at each position of the modeled DNA sequence.

My models are built from the four abstract classes of factors: nucleotides, transcription

factors, nucleosomes, and transcriptional machinery. Below are the abstract names used

to create unique names for each nucleotide position. I create placeholders for the variables

that are substituted during model building by placing them within special characters. For

example, %position% is replaced with the position identifier.

3.4.4.2 Unbound Nucleotide State

The modeling framework treats DNA as a linear sequence of nucleotides. Each nu-

cleotide can be in only one of a limited number of states (Table 3.3). Most of the interac-

tions require each nucleotide to return to the unbound state before interacting with another

component.

3.4.4.3 Transcription Factor Bound States

Transcription factors are proteins that recognize small segments of DNA (typically 4-20

nucleotides) (Badis et al., 2009; Bulyk et al., 2001). They often work in groups or complexes,

allowing for varying degrees of control over the transcriptional process. Transcription factors

can function as activators or repressors of transcription. A position specific scoring matrix

(PSSM) is typically utilized to describe the sequence affinity preferences of each DNA

binding protein. The interaction of a regulatory protein with DNA is transient, as these
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Table 3.3: Nucleotide States.

Unbound States

DNA %position%

TF Bound States

%tf-name% bound %position%

TF bound %position%

Nucleosome Bound States

nuc bound %position%
nuc binding %position%
nuc stable %position%
nuc unbinding %position%

factors are thought to bind and release frequently (Berg et al., 1981). The physical binding

of a regulator to DNA depends on not only its PSSM, but also its cellular concentration. At

higher concentrations, the best matches to the PSSM will become saturated and the protein

will more likely bind to lower affinity sites. By default, I have utilized the TAMO data,

which contains 124 transcription factors (Gordon et al., 2005). I must create a reactant for

a nucleotide bound to each named transcription factor.

For simplicity, I only maintain the transcription factor bound states at a single position

even though the transcription factor spans multiple positions. As shown in Figure 3.8,

when the transcription factor binds at position i, the state of position i is changed from

unbound to bound by a transcription factor, and positions i+1 through i+W-1 (in this case

W=4) are no longer available for other interactions. The rules for the unbinding interaction

will restore all the nucleotides to the unbound state and remove the transcription factor

bound molecule at position i.

Each DNA binding protein interaction involves multiple nucleotides of the DNA. The

binding of a transcription factor or a nucleosome is not limited to a single nucleotide, but a

number of connected nucleotides. Each factor has a specific number of nucleotides that are
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affected when it is bound. Physically, a bound transcription factor molecule will keep other

molecules from accessing more nucleotides than just the length of its motif. Therefore, the

length of each factor’s interaction is determined by its PSSM and an additional number

of nucleotides that are occluded (Hesselberth et al., 2009). I model these occluded regions

by defining the window of nucleotides to impacted by a binding event. The size of the

additional nucleotides occluded can be generically set for all transcription factors and/or

specifically for individual transcription factors.

3.4.4.4 Nucleosome Bound States

Nucleosomes are an additional regulatory component in eukaryotes, which form stable

structures by wrapping DNA around histone proteins. The pliability of DNA is sequence de-

pendent, which creates an implicit probability of nucleosome formation (Drew and Travers,

1985; Morozov et al., 2009). Therefore, I can treat its binding in a similar fashion to a

transcription factor, only the size of the binding (W) is much greater (typically 147 nu-

cleotides). However, nucleosome formation is known to take more time than transcription

factor binding and unbinding (Hager et al., 2009). To represent the time between initial

binding of histones to the DNA and formation of a stable nucleosome, I introduce inter-

mediate states whose purpose is to extend the time necessary for complete formation of

the complex. There are two different stages in the formation of a stable nucleosome. The

first stage encompasses the binding of the nucleotides onto the DNA and occluding other

interactions. At this point, however, the nucleosome is not yet a stable state. The transition

to a stable nucleosome takes time, which is enforced by the use of multiple states, each with

individual rates for proceeding to the next state (Figure 3.10).

Nucleosome formation transitions from unbound to binding when forming a stable nu-

cleosome. The removal of a nucleosome follows a similar trajectory through an unbinding

state before reaching the fully unbound state. Similar to the transcription factor, only the

first nucleotide position is transitioned to new state and all other 146 positions are assumed

to be in same state.
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Figure 3.10: Nucleosome formation takes multiple time steps to occur, which is
implemented by using multiple states.Additional states are introduced to extend the
time necessary for a nucleosome to bind. Initial binding makes the window of nucleotides
unavailable for other interactions, but is not stable. A separate transition is necessary for
the formation of a stable nucleosome. Likewise, removal of the nucleosome is a two step
process through an unbinding state.

3.4.4.5 Transcription Machinery Bound States

The final component in my system is the transcriptional machinery. The movement of

the transcriptional machinery along DNA is a highly dynamic process that pauses, shows

variable processivity, and likely evicts DNA binding factors that impede its forward progress

(Coulon et al., 2013). Consequently, this component differs from transcription factors or

nucleosomes. As it travels along the DNA, it can influence the state of other bound factors.

In fact, when one transcriptional machine directly impacts a second transcriptional process,

this interaction is referred to as transcriptional interference (Prescott and Proudfoot, 2002).

The kinetics of these events is often inherently local and intrinsically stochastic.

Once the transcriptional machinery binds, it transcribes along the DNA in a single

direction. Therefore, there must be components for each direction (or strand) of DNA.

Using the yeast convention, I call one strand the Watson (w) strand and the other the

Crick (c) strand. All the possible transcriptional machinery states must exist in both

Watson and Crick form to allow for movement in either direction. Note that I differentiate
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the state names using a lower case c or w for the specific transcriptional machinery direction

(Table 3.4).

Biologically, the transcriptional machinery is thought to exist in at least four distinct

forms: the loading form, the initiation form, the elongating form, and the terminating

form. These forms differ in the composition of subunits present in the larger transcriptional

machinery complex. For simplicity, I have abstracted the transcriptional machinery into a

single component and, similar to nucleosomes, instantiated multiple states to simulate the

time needed to form and activate a transcriptional machine. For flexibility, the SRB can

be told the number of initiation stages that must be passed before the elongation state is

entered. At each stage, the transcriptional machinery is less likely to spontaneously abort

and more likely to move to the next stage. Once the transcriptional machinery transitions

to elongation, it can move in its predetermined direction along the DNA. Practically, as the

transcriptional machinery moves to a new nucleotide, that nucleotide is in the un-transcribed

state. Once the nucleotide transitions to the transcribed state, the transcriptional machinery

can be moved to the next position.

Table 3.4: States of Transcriptional Machinery bound DNA.

rnap w init %stage% %position%
rnap w scribing %position%
rnap w scribed %position%
rnap w abort %position%

rnap c init %stage% %position%
rnap c scribing %position%
rnap c scribed %position%
rnap c abort %position%

3.4.4.6 Actions within the Model

My modeling framework’s main focus is on the actions that occur to change the config-

uration of nucleotide states along the DNA. See Appendix 1 for a graphical representation

of all the actions currently encoded within the SRB. Here I provide additional information

on these actions.
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3.4.4.7 Transcription Factor Actions

Transcription factors interact with the transcriptional machinery. Some transcription

factors can recruit the transcriptional machinery to adjacent positions on the DNA. Like-

wise, an elongating transcriptional machinery can evict bound transcription factors it en-

counters in its path. These interactions are represented as distinct actions. Note that I

differentiate the action names using an uppercase C or W for the specific transcriptional

machinery direction.

Table 3.5: Actions of Transcription Factors. (see Appendix 1 for the figures)

Action Name Description Figure #

TF BIND Binding of TF to positions of DNA A1
TF UNBIND Return DNA to UNBOUND state A2

TF UNBIND W TM Increase probability of TF unbinding when TM is upstream A3
TF UNBIND C TM Increase probability of TF unbinding when TM is upstream A4

TF RECRUIT C TM Increase probability of TM C binding when TF is bound A5
TF RECRUIT W TM Increase probability of TM W binding when TF is bound A6

3.4.4.8 Nucleosome Actions

In addition to the actions involved in nucleosome formation, I enforce a minimum dis-

tance between stable nucleosomes by including actions capable of taking into account the

status of adjacent nucleosomes.

3.4.4.9 Transcription Machinery Actions

The transcriptional machinery binds and protects both strands of the DNA, but only

moves (transcribing) in a single direction. The strands are represented as Watson (W) and

Crick (C) by the yeast convention. As many intermediate states are necessary to capture

the temporal behavior of transcriptional machinery, I provide the appropriate actions to

transition between these states.

3.4.5 Validation

To evaluate the predictive capability of each of the models, we compared the model’s

predicted nucleosome occupancy with an experimentally measured data set. We use Pear-

son correlation of occupancy values at all the positions within a given region to score the
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Table 3.6: Actions of Nucleosomes. (see Appendix 1 for the figures)

Action Name Description Figure #

NUC BIND Binding of nucleosome to DNA A7
NUC UNBIND Transition from STABLE to UNBINDING A7
NUC STABLE Transition from BINDING to STABLE A8
NUC EVICT Return DNA to UNBOUND state A8

NUC BOUND BOUND LEFT 0 BOUND nucleosome checking for BOUND nucleosome to the
LEFT (increasing position) in the BOUND state at
0 space between

A9

NUC BOUND BOUND RIGHT 0 BOUND nucleosome checking for BOUND nucleosome to the
RIGHT (decreasing position) in the BOUND state at
0 spaces between

A9

NUC BOUND BOUND LEFT L BOUND nucleosome checking for BOUND nucleosome to the
LEFT (increasing position) in the BOUND state at
L spaces between

A10

NUC BOUND BOUND RIGHT L BOUND nucleosome checking for BOUND nucleosome to the
RIGHT (decreasing position) in the BOUND state at
L spaces between

A10

NUC BOUND BINDING LEFT 0 BOUND nucleosome checking for BINDING A11
NUC BOUND BINDING RIGHT 0 BOUND nucleosome checking for BINDING
. . .
NUC BOUND BINDING LEFT L BOUND nucleosome checking for BINDING A12
NUC BOUND BINDING RIGHT L BOUND nucleosome checking for BINDING

NUC BINDING BOUND LEFT 0 BINDING nucleosome checking for BOUND A13
NUC BINDING BOUND RIGHT 0 BINDING nucleosome checking for BOUND
. . .
NUC BINDING BOUND LEFT L BINDING nucleosome checking for BOUND A14
NUC BINDING BOUND RIGHT L BINDING nucleosome checking for BOUND

accuracy of each model. Although each position of the DNA is not independent of the

adjacent positions (because components bind multiple positions), we feel that this simple

statistic is adequate for comparison between models.

There are many different experimental data sets available for nucleosome occupancy

(Field et al., 2008; Kaplan et al., 2009; Lee et al., 2007). Each data set uses different

protocols to measure the nucleosome occupancy across the entire genome by matching the

fragments of DNA bound in a nucleosome to the genomic sequence. I chose the Lee et al.

experimental data set because of its high resolution (4 bp). To compare the experimental

data set to the single nucleotide resolution model predictions, the model prediction data is

averaged over each of the experimental data’s positions (+/-2 base pairs).
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Table 3.7: Actions of Transcriptional Machinery. (see Appendix 1 for the figures)

Action Name Description Figure #

TM W INITIATE enter first initiation state A15
TM W NEXT STAGE move from stage s to s+1 A16
TM W ACTIVATE transition from initiation stage to transcribing A16
TM W TRANSCRIBE transcribe the current location, enter transcribed state A17
TM W MOVE transition from transcribed [i] to transcribing [i+1] A17
TM W EVICT NUCLEOSOME increases the probability of the nucleosome entering unbinding state A22
TM W TERMINATE completed the transcription of the mRNA A19

TM W ABORT INITATION abort from an initiation stage A16
TM W ABORT TRANSCRIBING abort from an transcribing stage A18
TM W ABORT TRANSCRIBED abort from an transcribed stage A18

TM C INITIATE enter first initiation state A15
TM C NEXT STAGE move from stage s to s+1 A16
TM C ACTIVATE transition from initiation stage to transcribing A16
TM C TRANSCRIBE transcribe the current location, enter transcribed state A17
TM C MOVE transition from transcribed [i] to transcribing [i+1] A17
TM C EVICT NUCLEOSOME increases the probability of the nucleosome entering unbinding state A22
TM C TERMINATE completed the transcription of the mRNA A19

TM C ABORT INITIATION abort from an initiation stage A16
TM C ABORT TRANSCRIBING abort from an transcribing stage A18
TM C ABORT TRANSCRIBED abort from an transcribed stage A18

TM EVICT shared by both TM molecules, changes DNA to unbound state A15

Table 3.8: Actions of Transcriptional Machinery Interference. (see Appendix 1 for the
figures)

Action Name Description Figure #

TM COLLISION two convergent TM colliding, current implementation causes both
TM to abort (Sneppen et al., 2005)

A20

The following actions check for TM in any
of the initiation stages ahead of transcribing
TM

TM W SITTING DUCK TM C STAGE 0 A21
. . .
TM W SITTING DUCK C STAGE %S% A21

TM C SITTING DUCK TM W STAGE 0 A21
. . .
TM C SITTING DUCK W STAGE %S% A21

3.5 Results

3.5.1 Case Studies

In this section I describe case studies that verify the simulations capture both the

positional and temporal aspects of regulation at well-studied yeast loci. Each case study

is focused on validating a distinct property of my framework. The first study examines

my ability to capture positional information in a manner similar to the best positional

models. The second case study focuses on the ability to capture temporal information, such

as the effects of transcriptional interference as a regulatory mechanism. Finally, I consider
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the scalability of my framework by modeling an entire chromosome. The end goal of these

simulations is to provide validation of my modeling framework, not to present new biological

insight. Here I describe the overall results of these case studies and interesting observations

arising from my work, as well as a description of the parameters, runtimes, and memory

usage for each simulation. To evaluate each of the models, I compared the model’s predicted

nucleosome occupancy with an experimentally measured data set (Lee et al., 2007). While

my model is at base pair resolution, the Lee experimental data is measured at a 4 base pair

resolution. Therefore, I summarize the predicted values over each Lee data probe (+/-2 bp)

and calculate a Pearson correlation value.

3.5.2 Capturing Positional Information (GAL10)

The first case study focuses the model’s ability to capture accurate positional infor-

mation. Occupancy is a population averaged measure of the time that a position of the

DNA is occupied. Changes in transcription factor concentration can alter the identity and

occupancy of factors within the region. For example, the GAL locus is one of the most

well studied regions within the yeast genome. This locus has a known activator (GAL4),

which has multiple binding locations in the promoter region. By running my simulation

at distinct concentrations, my model shows a parallel increase in the occupancy of GAL4,

causing shifts in nucleosome positioning that opens the chromatin near both GAL10 and

GAL1 transcription start sites (Figure 3.11). My model and the best positional models,

as exemplified by the COMPETE model (Wasson and Hartemink, 2009), both predict the

changes in nucleosome occupancy in the region (using GAL4 and nucleosomes only).

Table 3.9: Typical run time and memory usage for GAL10-GAL1 models (laptop, 2.8
GHz cpu, 8 GB ram; 110,000 rules using 19500 reactants)

SRB DIZZY

Execution Times 10 sec 200 sec

Memory Usage 60 MB 3.7 GB
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Figure 3.11: Nucleosome occupancy of GAL10-GAL1 region. My model was run
without (top track) and with (second track) the Gal4 transcription factor. The results
largely recapitulate the findings in Wasson and Hartemink (2009) Figure 1, showing how
random nucleosome positioning is transitioned to a phasing of nucleosomes when barriers
(Gal4 in red third track) are added.

Table 3.10: Non-default parameters used for GAL10-GAL1 models

Attribute Name Value used Notes

DNA
chr chrII
START 270000
END 283000
GROUPING 4

Nucleosome
ON RATE 0.0001
OFF RATE 1.0
INITIAL COUNT 50000
LINKER SIZE 30

Transcription Factor
TF LIST GAL4
MOTIF FILE DATA/yeast.tamo
THRESHOLD .5

GAL4
INITIAL COUNT 500 (Count of 0 used when modeling nucleosomes only)

3.5.3 Capturing Positional Information (CLN2)

A more interesting case is the CLN2 locus, where experiments show that multiple fac-

tors work cooperatively, without explicit protein-protein interaction, to maintain a known

nucleosome depleted region (NDR) (Bai et al., 2011). Bai and colleagues determined that

the NDR of CLN2 was dependent on three transcription factors: Mcm1, Reb1, and Rsc3. I

sought to confirm that my modeling framework could capture this nucleosome depleted re-

gion in a manner similar to the state-of-the-art positional models, again using COMPETE

(Figure 3.12). In this case, I quantitatively compared each model to Lee’s experimen-

tally determined nucleosome occupancy profile and obtained at 4-nucleotide resolution (Lee
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Figure 3.12: Modeling nucleosome occupancy at gene CLN2 recapitulates the
known nucleosome depleted region (NDR).The yeast gene CLN2 (blue box) contains
a well-studied NDR upstream of the start site. The known location of three key transcription
factors (Mcm1, Rsc3, and Reb1) are shown as red geometric shapes (Bai et al., 2011). The
experimentally determined nucleosome occupancy (Lee et al., 2007) is shown in black, as
observed from ChIP signal (normalized, log2 scale). The bottom panel shows the results
from my model (red line) and the COMPETE model (green dotted line), plotted as the
probability of a nucleosome (y-axis) as a function of DNA position (x-axis).

et al., 2007). Giving each model (COMPETE and my framework) the three key transcrip-

tion factors (Mcm1, Reb1, and Rsc3), both models correlated well with the experimental

data (COMPETE r=0.59; my SSA model r=0.57), showing that, similar to GAL4, my

framework captures the same steady state behaviors as a state of the art positional model.

Upon inspection of my initial results in this region (3 transcription factors + nucleo-

somes), I noted a sharp drop in nucleosome occupancy proximal to the CLN2 transcription

start site that corresponds to a well-defined TATA box sequence. Upon adding the TATA-

binding protein to the simulation, I obtained a stronger nucleosome depleted region around

the TATA box that more closely mimicked the experimental data (r=0.62 for entire region

for both models).

I next sought to understand the underlying dynamics implied by my simulations be-

tween the transcription factors, the nucleosomes, and the DNA sequence at this locus.

When my SSA model uses only nucleosomes, the correlation to the experimental data is

little better than random (r=0.10)(data not shown). This result is consistent with previous

experimental work which showed the NDR had lower nucleosome occupancy than was pre-

dicted by positional models that use only nucleosome affinity (Kaplan et al., 2009). Next, I
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added in only the transcription factor Mcm1 and observe the emergence of a well-positioned

nucleosome at the far edge of the NDR. This nucleosome influences the positioning of ad-

jacent nucleosomes, consistent with studies that indicate that a single transcription factor

can impact many nucleosomes (Jansen et al., 2012). As I add additional transcription fac-

tors to the model, they improve the correlation with experimental data, showing that my

framework can capture the implicit cooperation of multiple binding factors to maintain the

NDR.

Finally, I sought to determine how sensitive my model results were to the particular

configuration of parameters chosen for the less well determined parameters within my model,

namely binding rates and molecule counts. I found that small changes in molecule counts

for Mcm1 have an initial dramatic effect on configurations, but that saturation is quickly

reached (data not shown). My stable NDR results were obtained using three transcription

factors (Mcm1, Rsc3, Reb1) at the default molecule counts (Ghaemmaghami et al., 2003)

by adjusting the OFF rate, which controls the residency time. If the OFF rate is reduced

to 10%, the molecule count must be increased by a factor of 10 to maintain the NDR. This

implies that the balancing act between molecule counts and residency time is consistent

with intuition about how the model should perform. Furthermore, it has been speculated

that modulation of residency times may allow for more precise regulation (Lickwar et al.,

2012b).

It should be noted that the single trajectory nature of my simulations leads to a number

of interesting observations at the CLN2 locus. First, all three transcription factors are not

necessarily bound at the same time to maintain the NDR. I observe cases where zero, one,

two or three transcription factors are bound. Likewise, the NDR shows some limited binding

of nucleosomes, consistent with the fact that a depleted region does not imply the absence

of binding, but rather less binding than expected. Lastly, I observe that a transcription

factor with longer residency time has a stronger effect on nearby nucleosome positioning

(data not shown). This effect propagates out from the transcription factor position over

time, leading to speculation that longer residency times may be necessary for long range
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effects. My models allow for the exploration of the temporal patterns of interactions that

lead to the NDR result, observations that could be experimentally validated.

Table 3.11: Typical run time and memory usage for CLN2 models (laptop, 2.8 GHz cpu,
8 GB ram; 43,000 rules using 12,000 reactants)

SRB DIZZY

Execution Times 6 sec 78 sec

Memory Usage 30 MB 2.3 GB

Table 3.12: Non-default parameters used for CLN2 models

Attribute Name Value used Notes

DNA
chr chrXVI
START 64001
END 72000
GROUPING 4

Nucleosome
ON RATE 0.0001
OFF RATE 1.0
INITIAL COUNT 100000
LINKER SIZE 10

Transcription Factor
TF LIST REB1, MCM1, RCS3, TBP
MOTIF FILE DATA/yeast.tamo

MCM1
OFF RATE .01
OCCLUSION 5 12
OCCLUSION 3 12

REB1
OFF RATE .01
OCCLUSION 5 12
OCCLUSION 3 12

RSC3
ON RATE .1
OFF RATE .8
INITIAL COUNT 3
MOTIF CGCGC

TBP
OFF RATE .035
INITIAL COUNT 4
THRESHOLD .85
MOTIF TTATATAT

3.5.4 Capturing Temporal Interaction (IME4)

The second case study focuses on the ability of my framework to capture temporally

driven events, such as transcriptional interference. I use a well-studied location, the IME4

locus, where transcription of the gene is constitutive and largely unregulated. Yet, Ime4 is
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an N6-adenosine methyltransferase required only for a cell’s entry into meiosis. To modulate

Ime4 levels, the cell produces an antisense transcript constitutively that, by transcriptional

interference, stops the gene’s sense transcript from completing (Hongay et al., 2006). Only

in diploids where the antisense transcript is itself repressed can the full length transcript of

IME4 be produced. It is precisely this sort of regulation that motivated the development

of my modeling system. I sought to confirm that my model could recapitulate the known

transcriptional interference pattern observed in experimental data. In yeast there exists a

transcription factor, a/α, which is unique to diploids. I ran the IME4 locus both with and

without the a/α transcription factor. In the absence of the transcription factor, I observe

robust transcription of the antisense transcript and very little of the sense transcript reaches

full length. In the presence of a/α, the antisense transcript is repressed by occluding the

antisense initiation site, allowing most of the sense transcript to reach full length. These

simulation results are consistent with the experimental data at IME4 (Gelfand et al., 2011;

Hongay et al., 2006). I then explored a series of interesting what if scenarios at this locus.

For instance, I studied the impact of different transcriptional machinery initiation and elon-

gation rates on the transcriptional interference event. From these parameter explorations,

it is clear that the initiation rate of the transcriptional machinery must be fast enough to

always keep at least one polymerase transcribing in the antisense direction for each ini-

tiation of sense strand machinery (Figure 3.13). This pattern is consistent with previous

mathematical studies of transcriptional interference (Sneppen et al., 2005).

One interesting observation is worth noting: transcription through any transcription

start site causes a transient localized open chromatin conformation that makes initiating

transcriptional machinery more likely. Thus, the few sense transcripts that do complete,

i.e. traverse through the start location of the antisense transcript, typically trigger the

initiation of an antisense transcript. This may illustrate a particularly interesting feedback

mechanism where the rate of transcription through a region regulates the open chromatin

and therefore transcription at nearby sites.
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A)

B)

C)

D)

Figure 3.13: IME4 transcription regulation.A) Number of transcription events along
the DNA for the sense (blue) and anti-sense (red) transcripts. B) Model results when the
same simulation was run with the addition of the a/α transcription factor, a simulation that
captures the diploid state. C) IME4 gene and binding location of the repressing factor. D)
Rates of full-length transcripts as percentage of initiated transcripts. Different conditions
show the relative rates of initiation (sense to antisense), and when a1/α2 repression factor
is included (uses same initiation as 1 to 3).
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Table 3.13: Typical run time and memory usage for IME4 models (laptop, 2.8 GHz cpu,
8 GB ram; 38,000 rules using 22,000 reactants)

SRB DIZZY

Execution Times 3 sec 135 sec

Memory Usage 30 MB 3.5 GB

Table 3.14: Non-default parameters used for IME4 models

Attribute Name Value used Notes

DNA
chr chrVII
START 140000
END 146000
GROUPING 8

Nucleosome
ON RATE 0.0001
OFF RATE 1.0
INITIAL COUNT 50000
LINKER SIZE 18

Transcription Factor
TF LIST A1 ALPHA2
MOTIF FILE DATA/yeast.tamo

A1 ALPHA2
ON RATE .5
OFF RATE .01
INITIAL COUNT 10 Count is 0 for nominal processing. 10 is used when in-

hibiting transcription
MOTIF TGTNNNNNNNNACATCA

RNAP
MODEL RNAP 1
N STAGES 5
INITIAL COUNT 4
ON RATE .05
OFF RATE .0008
INIT RATE .1

POSITIONS [142175, W] [144220, C]
[144190, C] [144250, C]

Explicit positions of initiation. 1 sense initiation and 1-3
sense to anti-sense initiation

3.5.5 Tractability

My last case examines the tractability of using my framework to model large systems.

One of my modeling goals was to include temporal information while maintaining com-

putability for large sequences. This case study specifically focuses on testing options for

scaling the simulations. I chose to model an entire chromosome from the yeast genome.

S. cerevisiae chromosome I is approximately 230,000 nucleotides containing 92 genes. In

the worst case, modeling of a large sequence with many transcription factors present can

generate millions of rules and overwhelm the simulation engines. When using transcription
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factor threshold cutoffs, a single locus, such as GAL, CLN2, or IME4, generates thousands

of rules and reactants (Table 3.15). For chromosome I, a similar approach at single nu-

cleotide resolution would produce approximately 7 million reactants and 40 million rules.

To make this simulation tractable, I employed nucleotide grouping, reducing the granular-

ity of the resultant simulation. I found that grouping the DNA into 30 nucleotide units

reduced the model to 170,000 reactants and 400,000 rules. At this size, Dizzy simulations

were tractable, requiring 98 GB of ram and running for just over 20 CPU hours per sim-

ulation. My resource limiting factor in computability is the stochastic simulation engine,

currently Dizzy (Ramsey et al., 2005). It computes large tables to efficiently transition

between the possible interactions. As these tables grow towards a given machine’s available

RAM, performance decreases quickly. Managing the number of rules that are created keeps

the models computable. It is possible that other off-the-shelf simulators would be capable of

larger simulations using fewer compute resources. Alternatively, it is possible to replace the

off-the-shelf stochastic simulation engine with one designed specifically for this application.

3.5.6 Complexity

The SRB generates models that are created for simulation using an off-the-shelf simu-

lation engine. This engine is expecting a set of chemical reaction equations describing the

interactions between all the different molecules. Each reaction describes the pre-condition

molecules, the rate, and the post-condition molecules (Equation 1). My modeling frame-

work can generate a model for any DNA sequence. The size of the model is dependent on

the number of different DNA binding factors included, the number of actions being applied,

and the length of the DNA sequence being modeled. At every position, a number of rules

are generated for each action. Each action can influence a set of additional positions, as

defined by the span of the rule. Even in the worst case, when all rules are applied at all

positions, the number of states and rules generated grows linearly with the length of the

DNA sequence being modeled (Figure 3.9). My modeling framework uses thresholds for

factor affinity to manage the number of sequence positions that generate transcription fac-

tor binding-unbinding rules, which can drastically reduced the size of these models. The
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runtime of the SRB scales linearly with the size of the model being generated (Figure 3.9).

Even with the reduction of rules from the TF components, the sizes of these models are

beyond the capabilities of the current simulation engines. To combat this problem, my SRB

application can group the interactions for a group of DNA nucleotides together into a single

position within the model. Using this rule reduction method, I have been able to run a

model of a complete chromosome of yeast (chromosome 1, 230,000 nucleotides).

Table 3.15: Model size is dependent on components included in the model

Genomic Region Size (nucleotides) Theoretical Actual

Average Gene 4,000 31,140,000 676,985

Smallest Chromosome (chrI) 230,218 1,792,247,130 40,044,142

Largest Chromosome (chrIV) 1,531,933 11,926,098,405 266,420,938

The actual number of rules is only ≈2% of the theoretical limit. Theoretical numbers

assume each nucleotide of the DNA is modeled (no grouping) and all rules are applied at

every position. The reported values for Actual assumes a minimum score from the PSSM

for be obtained at a sequence position before rule generation for that transcription factor.

A total of 124 transcription factors defined in TAMO are included in these calculations.

Table 3.16: Component attributes that influence the span of some actions

Component Variable Size

TF (each has different footprint) WTF [4..25], nominally 12

# of TFs #TFs 120
depending on source data

Nucleosome WN 147
Nucleosome Linker WL 1

TM WTM 25
TM initiation stages #stages 5

I next consider the maximum number of rules that can be generated for any sequence.

For each abstraction (Appendix I) I consider its span of influence (range of other positions

that are referenced). The larger the span of the influence, the more positions that are inter-

related. The application of a specific rule at position i can directly impact some number

of adjacent nucleotides, giving rise to a formula for calculating the number of rules that
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have any specific position as a reactant or resultant. Using the parameter settings from

Table 3.16, this produces a theoretical maximum for the number of rules influenced by

position i. A worst-case total of 18,855 rules involve each position of the DNA.

Table 3.17: Complexity analysis for transcription factor abstractions.

Figure Action Name Span of Influence Worst-case # of rules
impacted by a state
change at position i

Max #
of rules1

# of rules
generated
per position

A1 TF BIND [i, i+WTF-1] WTF * #TFs 1440 1

A2 TF UNBIND [i, i+WTF-1] WTF * #TFs 1440 1

A3 TF UNBIND by TM-W [i-WTM, i+WTF-1] (WTF+WTM)*#TFs 4440 1

A4 TF UNBIND by TM-C [i, i+WTF+WTM-1] (WTF+WTM)*#TFs 4440 1

A5 TF RECRUIT TM-C [i-WTM, i+WTF-1] (WTF+WTM)*#TFs 4440 1

A6 TF RECRUIT TM-W [i-WTM, i+WTF-1] (WTF+WTM)*#TFs 4440 1

1Max # of rules is calculated using values from Table 3.16.

Table 3.18: Complexity analysis for nucleosome abstractions.

Figure Action Name Span of Influence Worst-case # of rules
impacted by a state
change at position i

Max #
of rules1

# of rules
generated
per position

A7 NUC BIND [i,i+WN-1] WN 147 1

A7 NUC UNBIND [i,i+WN-1] WN 147 1

A8 NUC STABLIZE [i,i+WN-1] WN 147 1

A8 NUC EVICT [i,i+WN-1] WN 147 1

A9 -
A14

NUC LINKER [i,i+WN+WN-1+WL+L] WN+WN+(WL*3) 348 54

1Max # of rules is calculated using values from Table 3.16.

3.6 Discussion

My goal was to integrate inherently dynamic aspects of transcriptional regulation, such

as transcriptional interference, with the intuitive position based models. To this end, I con-

structed a modeling framework that leverages the power of Petri nets to describe the actions

of various regulators and the extent or span of their influence. By treating the DNA as an

ordered set of entities (nucleotides or groups of nucleotides) rather than a single molecular

entity, I can generate models that grow linearly with the length of the DNA sequence being

modeled. At the core of my framework is my stochastic rule builder, an application that can

take in an arbitrary sequence and construct the complete set of coherent biochemical rules.
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Table 3.19: Complexity analysis for transcriptional machinery abstractions.

Figure Action Name Span of Influence Worst-case # of rules
impacted by a state
change at position i

Max #
of rules1

# of rules
generated
per position

A15 TM W INITIATE [i, i+WTM-1] WTM 25 2

A16 TM W NEXT STAGE [i, i+WTM-1] WTM * #stages 125 10

A16 TM W
ABORT INITIATION

[i, i+WTM-1] WTM * #stages 125 10

A16 TM W ACTIVATE [i, i+WTM-1] WTM 25 2

A17 TM W TRANSCRIBE [i, i+WTM] WTM 25 2

A17 TM W MOVE [i, i+WTM-1] WTM 25 1

A18 TM W
ELONGATION ABORT

[i, i+WTM-1] WTM 25 2

A19 TM W TERMINATE [i, i+WTM-1] WTM 25 2

A22 TM W
EVICT NUCLEOSOME

[i, i+WTM+WN-1] (WTM + WN) 172 2

A15 TM C INITIATE [i,i+WTM-1] WTM 25 2

A16 TM C NEXT STAGE [i,i+WTM-1] WTM * #stages 125 10

A16 TM C
ABORT INITIATION

[i, i+WTM-1] WTM * #stages 125 10

A16 TM C ACTIVATE [i,i+WTM-1] WTM 25 2

A17 TM C TRANSCRIBE [i-1, i+WTM-1] WTM 25 2

A17 TM C MOVE [i-1,i+WTM-1] WTM 25 1

A18 TM C
ELONGATION ABORT

[i,i+WTM-1] WTM 25 2

A19 TM C TERMINATE [i,i+WTM-1] WTM 25 2

A22 TM C
EVICT NUCLEOSOME

[i,i+WTM+WN-1] (WTM+WN) 172 2

A20 TM COLLISION [i, i+WTM+WTM-1] WTM + WTM 50 1

A21 TM* SITTING DUCK [i, i+WTM+WTM-1] (WTM + WTM)
* 2 * #stages

500 10

A15 TM EVICT [i, i+WTM-1] WTM 25 2

1Max # of rules is calculated using values from Table 3.16.

Off-the-shelf stochastic simulation engines, such as Dizzy, can then simulate these rule sets.

I have developed a framework to create biologically realistic models of the mechanisms of

transcriptional regulation. Based on this framework, I can model not only the steady-state

behavior of transcription factor binding and nucleosome formation (case study 1), but also

the dynamics of components, such as the transcriptional machinery (case study 2). My

framework scales linearly, making it possible to simulate very large segments of DNA (case

study 3). The simulations produce tremendous amounts of positional and temporal data,

90



Figure 3.14: Runtime of the SRB application is linear with respect to length
of the DNA sequence. Using chromosome IV, models of varying lengths of DNA (1000,
10,000, 50,000, 100,000, 500,000, and 1,000,000 nucleotides) were generated using 124 TFs.
These models were generated on a server: Dell R510 (12 MB Cache, 2.66 GHz), 128 GB
ram, and 48 TB storage.

which can be converted into simple visualizations depicting the state of the DNA at each

time step (see Figure 3.7). There is an intimate relationship between the development of

new experimental techniques and new modeling frameworks. Typically, the level of detail of

the modeling abstraction is influenced by both the questions being asked and the resolution

of available experimental data. Large-scale experimental techniques are continuously evolv-

ing to capture increasingly detailed views of regulation. Recent experimental work is only

beginning to highlight the importance of temporal dynamic events, such as transcription

factor turnover (Lickwar et al., 2012b), nucleosome turnover (Dion et al., 2007), and tran-

scriptional interference (Palmer et al., 2011), for understanding transcriptional regulation.

As is true with any new modeling system, my framework depends on a number of pa-

rameters to capture the distinct behaviors of individual components. I not only require the

DNA binding parameters used in positional models, but also rate parameters that capture

the underlying temporal aspects of events. Unfortunately, many of the temporal parameters

are not currently known. I presently set these parameters using coarse searches for values

that reasonably capture desired phenomena or fit available experimental data. I am well
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aware that many of these parameters may be overfit, thus detailed parameter explorations

and sensitivity analysis remains as future work. However, as new experimental studies

uncover these rates or identify new key regulatory mechanisms, my modeling framework

is poised to incorporate this information. Ultimately, single cell measurements (Taniguchi

et al., 2010) will permit a more precise comparison between my model and biological real-

ity. As my understanding of the molecular details improves, my framework can be easily

extended.

Currently, my system simplifies every component in an attempt to capture the essence

of its behavior. However, it may be necessary to extend existing components to capture

key molecular events. For example, I currently consider the nucleosome as a single large

binding component. Yet in reality, the nucleosome is composed of a histone core (H3-

H4), which binds first, and two subunits (H2A-H2B) on each edge (Andrews and Luger,

2011). Recent work on nucleosome dynamics indicates the core histone is relatively stable,

whereas the edge histones are more dynamic (Böhm et al., 2011; Li et al., 2005). In the

future, I may need to model the core and edge components separately to account for their

differences in behavior. Likewise, I may need to add additional components, such as histone

tail modifications, that can affect the affinity or stability of a nucleosome. While histone

modifications are known to be well correlated with transcriptional state (Berger, 2002), the

details of how these marks influence binding, when these marks are temporally deposited,

and how they function is not well characterized. Therefore, the addition of new components

or augmented functionality must be balanced against the parameterization problem. Only

as I understand the dynamic behavior of these components in more detail is it realistic to

include these within my framework.

My framework results in a large set of rules to describe the chemical reactions within

the system. An alternative to simulating the system of equations is to mathematically solve

them. Solving the system of differential equations would provide the equilibrium behavior

of the system, but requires large-scale system solvers. Even the best of these solvers are

limited in their ability to handle tens of thousands of equations (Pahle, 2009). Simulation
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can handle much larger sets of equations, but at the cost of increasing computational time.

Finally, my SRB produces single trajectory simulations for a single cell, but they are not

whole cell simulations. The current models reach a relative equilibrium (cycling through

common configurations), as there is little feedback to alter protein concentrations or modify

component behaviors within the system. As the parameters of the model become more

informed by experimental data, I envision introducing realistic feedback into the model.

3.7 Conclusion

I have created a modeling framework that captures both the positional and temporal

aspects of transcriptional regulation. My framework uses Petri nets to describe permissible

actions and their localized span of influence. I have created an application, the stochastic

rule builder, which quickly generates large systems of chemical reactions to model any

specific instance of DNA. The resulting equations can be simulated with standard stochastic

simulation engines. I confirmed through case studies that my model can capture positional

information, temporal information, and is scalable to large segments of DNA.

I consider my framework, at this time, as primarily an exploration tool. The predictive

power is limited to the known kinetics of factors and this knowledge is currently limited.

As technological advances in single cell experimentation further uncover temporal cellular

kinetics, my flexible modeling framework can easily be extended to incorporate new com-

ponents or additional detail of component behavior. The models will continue to advance

towards biologically realistic and predictive models of transcriptional regulation.
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CHAPTER IV

DYNAMIC NUCLEOSOME MODEL 2

4.1 Introduction

Transcriptional regulation emerges from the complex system of interactions amongst

factors binding to the DNA. Current steady state models capture the competition and

cooperation between factors for access to the DNA, predict the occupancy of factors bound

to the DNA, and infer transcription rates. Nucleosome positioning plays a key role in

transcription and the accuracy of these models. Most models consider nucleosomes as

monolithic 147 nucleotide binding factors, but recent work has shown that nucleosome

formation is dynamic (Andrews and Luger, 2011). In this work I extend a positional steady

state model described by Wasson (Wasson and Hartemink, 2009). The COMPETE model

uses a Hidden Markov Model (HMM) to capture the transitions between biologically inspired

states and represent the competition between components for DNA. My extension adds

multiple states for the dynamic formation of nucleosomes. My extended model achieves

better correlation to experimental nucleosome occupancy data over the whole genome. My

results show how and where the correlation between model predictions and experimental

data have increased within the genome.

4.1.1 Components of Transcriptional Regulation

Transcriptional regulation emerges from the complex interactions between many compo-

nents vying for the opportunity of binding with the DNA. The patterns within the sequence

of DNA control the position and rates at which these components will bind and ultimately

initiate transcription. Previous systems biology work has shown how changes in the DNA

sequence affect the rate of transcription (Lubliner et al., 2013).

Transcription factors are the best known components affecting transcription. It is only

when the correct configuration of factors are bound to the DNA that transcription oc-

curs. Each transcription factor has a unique affinity for specific patterns of DNA sequence

2A Manuscript covering part of this work is currently in preparation: ”Dynamic nucleosomes in a steady
state model.” This work was supported by a Chateaubriand Fellowship awarded to me in 2012 to work
collaboratively with Laboratoire Joliot Curie, Ecole Normale Superieure de Lyon, Lyon, France.
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(Stormo, 2013; Gordon et al., 2005). Transcription factor affinity is represented using a po-

sition specific scoring matrix (PSSM), which quantifies the probability of finding the factor

bound at a specific DNA pattern. The probability of a transcription factor binding to any

position of a DNA sequence is dependent on its affinity for the sequence at that position

and the cellular concentration of the factor.

However, transcription factors only bind to a small portion of the DNA. Most of the

DNA in a cell is bound within nucleosomes, which are formed by the wrapping of ~147

nucleotides around a set of histone proteins (Luger et al., 2012). Although any sequence

of DNA can be found within nucleosomes, histones also have an affinity for patterns of

nucleotides (Lowary and Widom, 1998). The probability of histones binding to any position

of a DNA sequence is dependent on their affinity for the sequence at that position and their

cellular concentration.

All of the DNA binding factors are actively binding and unbinding with the DNA in vivo.

Still, each nucleotide of the DNA can only be bound by one component at a time. Therefore,

once bound within a nucleosome, most transcription factors are prevented from accessing

the nucleosome bound DNA. Combining all the factors into a single system creates a model

of competition between the different components for binding with DNA. The configuration

of factors bound to the DNA is the balance between the interactions of all the individual

components. Some configurations of factors simultaneously bound to the DNA will have

higher probability of occurring within a population of cells. Experimental measurements

across a population of cells will sample these different configurations.

Experimental techniques currently measure the position of factors within a population

of cells and averaged across time. Nucleosomes bind promiscuously and can be found at

80-90% of the genome at any time (Lee et al., 2007). The nucleosome positions are inferred

from the accumulation of data across a genomic region. Well-positioned nucleosomes have

accumulated more data at specific nucleotide positions, as opposed to randomly positioned

regions, where nucleosome data is spread with equal frequency across all positions (Struhl

and Segal, 2013).
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Nucleosome occupancy is related to, but distinct from, nucleosome positioning (Struhl

and Segal, 2013). In experimental data, occupancy is a measurement of the fraction of cells

within the population that were found to have a nucleosome occupying a specific position.

Nucleosome occupancy can be experimentally measured across entire genomes (Lee et al.,

2007) and occupancy profiles are used to show the perturbations to complex systems (Badis

et al., 2008). Because we are examining populations of cells, the positions of nucleosomes

are in a quasi steady state, where positions of individual nucleosomes in individual cells

are undergoing continual change, but the proportion of cells with nucleosomes at specific

positions remains nearly constant (constant within small variation).

4.1.2 Steady State Modeling of Transcriptional Regulation

The quasi steady state behavior of a cell population has been captured using steady

state modeling methods. Previous work has shown that HMMs can capture these complex

steady state systems (Segal et al., 2006; Wasson and Hartemink, 2009). Each nucleotide of

a DNA sequence can only be bound to at most one binding factor at a time. These discrete

states of the DNA can be represented as states in an HMM (Figure 4.1). The probability

of transitioning between the states is a function of the binding affinity of the factors for

specific sequences of DNA and the concentrations of those factors. Application of the HMM

to specific sequences of DNA and a DNA binding factor set can determine the probability

of all the possible configurations of factors bound along the DNA. From the probabilities

of each possible configuration, the probabilities of being bound by any single factor can

be determined at each nucleotide. HMM analysis is efficient and scalable, allowing the

modeling of whole genomes using the forward-backward algorithm.

In yeast there are over 150 known transcription factors (Teixeira et al., 2006). Many

of these factors have been well studied and their individual affinities for sequence have

been documented and have published PSSMs (Harbison et al., 2004; Gordon et al., 2005).

Although the concentrations of factors within individual cells vary depending on the cellu-

lar conditions, the population averaged concentrations have been experimentally measured
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(a)

(b)

Figure 4.1: Hidden Markov model states and transitions for individual nu-
cleotide position of DNA. Each circle is a possible state of an individual DNA nucleotide.
It can be unbound (U), bound to a transcription factor (T), bound within a nucleosome (C
and N). Arrows represent the transitions from one of these states to another. This model
only allows transition from the unbound state to one of the bound states. a) The states
and transitions in the Wasson paper use a pseudo state for all transitions. b) A simplified
way of imagining the transitions that will be used in other figures.

(Ghaemmaghami et al., 2003). The HMM state transitions to transcription factor bound

states are inferred from these affinities and relative concentrations.

Nucleosomes have a sequence affinity that is based on the thermodynamics of bending

the DNA into the nucleosome structure (Morozov et al., 2009). This affinity can also be

captured in a similar type of scoring matrix. Particular pairs of nucleotides are found at

greater frequency at specific positions within a nucleosome (Segal et al., 2006; Wasson and

Hartemink, 2009). Some of the bendability characteristics inherent in the DNA can be

captured by the probability of di-nucleotides (consecutive pairs of nucleotides). Various

patterns of consecutive nucleotides are easier to compress together or be stretched apart

when being coiled around the histone core. A di-nucleotide scoring matrix captures these

features and can be used to calculate transitions to the nucleosome bound states.

Each DNA position can be in only one state at a time, but all positions are not in-

dependent. Transcription factors typically bind from 4 to 20 nucleotides and nucleosomes

encompass up to 147 nucleotides. This can be captured in a HMM by explicitly listing

all the states for a DNA position and the required states of adjacent positions, where the

number of adjacent states is determined by the length of the scoring matrix. A single HMM
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Figure 4.2: Complete HMM states describing binding to transcription factors
and nucleosomes. Each circle is a possible state of an individual DNA nucleotide. It can
be unbound (U), bound to a transcription factor (T), bound within a nucleosome (C and
N). Arrows represent the transitions from one of these states to another. This model only
allows transition from the unbound state to one of the bound states. However, DNA binding
factors do not bind to only a single position of the DNA. Transitions of one nucleotide implies
the state for adjacent nucleotides (length is dependent on the individual factor).

can be created to represent all the possible states and transitioned for a sequence of DNA

(Figure 4.2). This HMM is used to analyze all the possible configurations of components

along the DNA and determining the probability of each nucleotide being in each of its

possible states using the forward-backward algorithm (Austin et al., 1991).

Verifying the accuracy of model predictions is difficult, as experimental techniques can-

not measure all the factors possible bound to the DNA in a single experiment. Current

techniques only measure a few components at a time. The most ubiquitous component is

the nucleosome. Using high throughput techniques, the DNA bound within a nucleosome is

collected and sequenced. From the sequencing data, nucleosome positioning and occupancy

can be determined for each nucleotide of the genome. The nucleosome occupancy can also

be predicted by the COMPETE model. Correlation of the predicted occupancy with the

experimentally determined occupancy is used to evaluate the accuracy of the models.
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4.1.3 Using Biologically Inspired States to Make Better Predictions

Nucleosomes are usually modeled as monolithic components, but recent work has shown

the dynamics of nucleosome formation and turnover (Böhm et al., 2011; Dion et al., 2007).

Although steady state models have shown good accuracy in predicting the nucleosome

occupancy in vivo, they assume a static 147 nucleotide nucleosome (see Luger et al. (2012)).

The dynamics of the nucleosome implies the DNA in the entry and exit arms is more

accessible to the other factors than the DNA around the core histones. The core nucleosome

consists of the H3-H4 histones binding with the central ~87 nucleotides. The DNA exists

in both of these states in vivo and both states should be represented in the models.

Even though nucleosomes can form with any sequence of DNA, the energy needed to

bend the DNA when coiling it around the histones is dependent on the sequence. Some

sequences are known to require more energy to be wrapped within a nucleosome and are

therefore rarely captured in experimental data. Poly dA:dT regions (at least five consecu-

tive A or consecutive T nucleotides) are one of these sequences (Segal and Widom, 2009b).

Because they are excluded from nucleosome formation, poly dA:dT tracks form natural

barriers for nucleosome positioning. These barriers have an influence on positioning that

extends through multiple adjacent nucleosomes and is seen as nucleosome phasing in ex-

perimental results (Kornberg and Lorch, 1999). Poly dA:dT sequences are often seen in

promoter regions near transcriptional start sites (Segal and Widom, 2009b) and have an

influence on the transcription rates (Raveh-Sadka et al., 2012). This work explores how

extending the COMPETE model to support other biologically inspired nucleotide states

increases the accuracy of nucleosome occupancy predictions across the whole genome. I

also show where these models work well and why the extended models are better able to

match the experimental data.

4.2 Contribution

This section reiterates the contributions for this chapter. See Section 1.3 for a complete

list of my contributions.
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• Extended a state-of-the-art positional model to include some of the dy-

namics of nucleosome formation by adding multiple nucleosome states and

transitions. The classical nucleosome is formed by eight histone proteins stably

binding to ~147 nucleotides of DNA. However, there are additional stable interme-

diate formations (Luger et al., 2012). Pairs of histones H3 and H4 are bound first

to form a core nucleosome and then pairs of other histones (H2A and H2B) combine

with the core to capture the additional DNA of entry and exit arms and form a stable

canonical nucleosome. I have enhanced a state-of-the-art positional model from using

a single nucleosome state to one including both a core and full nucleosome state.

• The two state nucleosome model correlates with the experimental nucle-

osome occupancy better than the single state nucleosome model across

whole chromosomes. The enhanced model showed an increased correlation of

genome wide nucleosome occupancy values between simulated and experimental data.

4.3 Methodology

4.3.1 Extending the COMPETE Model

One of the most well described steady state models is the COMPETE model (Wasson

and Hartemink, 2009). Briefly, the model captures the possible states of each nucleotide

in the sequence. Each nucleotide can only be in one of the following states: unbound,

bound within a nucleosome, or bound to a transcription factor. The probability of being

in those states depends on the sequence, the affinities of the factors for that sequence,

and the relative concentrations of factors. The forward-backward algorithm calculates the

probability of every possible configuration of factors along the DNA sequence and allows

the probability of each position being in each of the nucleotide states to be determined.

Steady state models have shown respectable accuracy in predicting the nucleosome oc-

cupancy in vivo while assuming a static 147 nucleotide nucleosome. The dynamics of the

nucleosome implies the DNA in the arms is more accessible to the other factors than the

DNA around the core histones. I have extended the COMPETE model to incorporate the
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both a full and a core nucleosome. My model includes an additional nucleotide state rep-

resenting being bound within a core nucleosome. The core nucleosome biologically denotes

the binding of H3-H4 histones with the 87 central nucleotides of a conventional nucleosome.

I use the central positions of the di-nucleotide scoring matrix to create the transitions to

the core nucleosome state.

The COMPETE nucleosome transition is based on the di-nucleotide scoring matrix

and only captures sequence dependencies between two consecutive nucleotides. The di-

nucleotide scoring matrix does not capture longer sequence features, such as the known

exclusion of nucleosomes at poly dA:dT regions. As there are no known transcription

factors that explicitly bind to a poly dA:dT sequence, I have created a pseudo transcription

factor to bind poly dA:dT regions to preclude nucleosome formation.

The COMPETE model generator is able to include any number of components within

the models. I selected a subset of the possible transcription factors with experimentally

determined PSSMs to be included in the models for analysis. Some of these transcription

factors were selected because of their involvement in regulation at specific loci in the genome:

Reb1, Mcm1, Rsc3, Pho1, and Gal4. Reb1, Mcm1, and Rsc3 participate in maintaining a

nucleosome depleted region at the CLN2 locus. Gal4 is the major contributor to regulation

at the well studied GAL10-GAL1 locus. In addition, Rap1 was selected because of its slow

turnover rate (Lickwar et al., 2012a) and Spt15, a subunit of the TATA binding protein

(TBP), was selected because it is instrumental in transcription initiation.

4.3.2 Evaluating the Accuracy of Model Predictions

To evaluate the predictive capability of each of the models, I compared the predicted

nucleosome occupancy with an experimentally measured data set. I used Pearson correlation

of occupancy values at all the positions within a given region to score the accuracy of the

model. Although each individual position of the DNA is not independent of the adjacent

positions (components bind multiple positions), I feel that this simple statistic is adequate

for comparison between models.
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There are many different experimental data sets available for nucleosome occupancy

(Lee et al., 2007; Kaplan et al., 2009; Field et al., 2008). Each data set uses different

protocols to measure the nucleosome occupancy across the entire genome by matching the

fragments of DNA bound in a nucleosome to the genomic sequence. The more DNA found at

each position, the larger the number of cells within the population have that DNA bound in

a nucleosome. Unfortunately, the data sets do not correlate with each other. The Kaplan

et al. and Field et al. data sets correlate much more closely to each other than to the

Lee et al. data set. I chose the Lee et al. data set because of its nucleotide resolution

and experimental protocol. I believe their protocol may allow the smaller core nucleosome

bound DNA to be captured within the experimental results.

The Lee et al. experimental data is measured at a 4 base pair resolution and my model

predictions are at single base pair. To compare the two data sets, the model prediction data

is averaged over a 5 base pair window for each of the experimental data points (+/- 2 base

pairs).

4.4 Results

I compared my model predictions for nucleosome occupancy to experimental data for

the entire yeast genome. I provided a quantitative comparison of nucleosome occupancy

between the model predictions at single nucleotide resolution and the experimental data at

4 base pair resolution. I showed that my biologically inspired dynamic two state nucleosome

model has achieved better overall correlation with experimental data than previous single

state nucleosome models.

I also showed an analysis of a specific locus within the genome where the models match

well and discussed the possible biological explanations for why my model performs better

than the original model.

4.4.1 Genome Wide Analysis of Single State vs Two State Nucleosome Models

I applied the single state and the two state nucleosome models with different sets of

components to each chromosome of the yeast genome. Correlations of predicted occupancy

as compared to experimental data are show for each model in Table 4.1. The two state
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model consistently correlates better with the experimental data. These correlation values

are consistent with previous models compared to in vivo experimental data (Tillo and

Hughes, 2009).

The nucleosome only model only includes the positioning from the histones sequence

affinity and lacks the competition from other components for binding the DNA. The di-

nucleotide nucleosome affinity scoring does not capture the aversion to nucleosome forma-

tion at the poly dA:dT sites and therefore the addition of the component for excluding

nucleosome formation at the poly dA:dT sites shows the greatest increase in correlation.

The exclusion sites create a barrier that limits the positioning for neighboring nucleosomes

and this in turn limits the positioning of adjacent nucleosomes (Parmar et al., 2014).

The transcription factors included in the final parameter set also increase the correlation

scores across the genome. Although the increase is not as large as the sequence exclusion

component, the addition of the transcription factors consistently increases the correlation

beyond the other parameterized models.

The correlation does not continue to increase with each additional transcription factor.

I also correlated the models using additional sets of factors and recorded a reduction in the

correlation (data not shown). I did not attempt to optimize the parameter set to achieve

the best correlation. The parameters used were selected to highlight the models’ predictions

at specific regions of the genome.

The correlation to the experimental data varies along the genome and there are regions

within each chromosome where the models work much better than the overall chromosome

correlation. The nucleosome occupancy differs between gene regions with high nucleo-

some occupancy and promoter regions where there is depletion in nucleosome occupancy. I

selected a set of ~4800 genes from the Saccharomyces Genome Database (SGD) gene anno-

tations and correlated predicted occupancy in these gene regions against the experimental

data. I created a set of promoter regions (from -500 to +100) around the annotated start

position of each gene.
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Table 4.1: Correlations for different models. The models were applied to multiple yeast
chromosomes with different sets of parameters. The nucleosome only model uses only the di-
nucleotide affinity matrix to calculate nucleosome occupancy. The Poly dA:dT model adds
a pseudo transcription factor that matches only five consecutive A or T nucleotides. The
last model adds a small set of transcription factors (TF) to the model (Reb1, Mcm1, Rsc3,
Rap1, Phd1, Gal4, Spt15). The addition of a poly dA:dT component shows the greatest
improvement in the correlations. The two state nucleosome models are consistently better
than single state nucleosome models. (see supplemental for other chromosomes)

Two State Nucleosome Model Single State Nucleosome Model

Chromosome Nucleosome
Only

Nucleosome
+ Poly dAdT

Nucleosome
+ Poly dAdT
+ TFs

Nucleosome
Only

Nucleosome
+ Poly dAdT

Nucleosome
+ Poly dAdT
+ TFs

chrI .223 .355 .361 .154 .335 .334
chrII .213 .326 .355 .149 .309 .327
chrIII .213 .344 .357 .151 .311 .322
chrIV .207 .300 .341 .145 .283 .312
chrV .215 .305 .340 .162 .281 .307
chrVI .211 .333 .351 .154 .309 .320
chrVII .212 .316 .359 .145 .300 .330
chrVIII .217 .327 .346 .150 .308 .315
chrIX .234 .315 .350 .171 .297 .324
chrX .224 .330 .363 .169 .308 .333
chrXI .215 .311 .341 - - .316
chrXII .205 .313 .346 .146 .298 .320
chrXIII .219 .315 .355 .158 .296 .323
chrXIV .212 .312 .341 .139 .292 .310
chrXV .216 .308 .347 .160 .280 .313
chrXVI .223 .311 .356 .157 .294 .324

For each gene and promoter region, the predicted occupancy was individually correlated

to the experimental data. Figures 4.3 and 4.4, I show a histogram of the number of regions

with each correlation value. I found that the correlations in the promoter regions are

significantly higher than the correlations in the gene regions (Table 4.2). This trend is

true regardless of whether the two state or single state nucleosome model is correlated.

When I compare the histograms of the two models in the gene regions or the two models

in promoters regions, I do not see a significant change in the distribution of the correlation

values, indicating neither model is significantly better in either subregion.

Table 4.2: Correlation values for Two State vs One State Nucleosome Model

Regions Two State Model Single State Model

Promoters 0.33 ±0.31 .31 ±.32

Genes 0.2 ±0.23 .17 ±.22
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Figure 4.3: Histogram of correlation values for all gene and all promoter regions
using Two State Nucleosome Model. The distribution of correlation values for a set of
~4800 genes across the entire genome is shown for gene regions and promoter regions. Each
region in a data set is correlated with the corresponding experimental data and shown as a
histogram of the number of regions with each correlation value (binned in .04 ranges). Gene
regions (spanning the annotated regions from SGD) are shown in red (mean=0.2, sd=.23).
The promoter regions (-500 to +100 around the annotated start site) are shown in blue
(mean=.33, sd = .31).

4.4.2 Analysis of CLN2 Promoter Region

When I zoom in on a specific promoter region within a genome, I can plot each model’s

predictions for nucleosome occupancy with the experimental data (Figure 4.5). The ex-

perimental data shows small peaks within nucleosome depleted regions (see the nucleosome

depleted regions near positions 67200, 67600, and 69200 on chromosome XVI in Figure 4.5).

These small peaks are too narrow to represent a full nucleosome’s stable formation. It is

possible these regions represent the capture of a smaller stable configuration within the dy-

namics of nucleosome formation. The core nucleosome fits in these regions (see Figures 4.5

- 4.7).

Visualizing the predicted occupancy by each of the models, I can visualize where the

model matches with the experimental data. The single state nucleosome model fails to

place nucleosomes in these three regions, however, the two state nucleosome model cap-

tures increased nucleosome occupancy within these regions. Figure 4.7 shows the overall

correlation for the region using the single state model is 0.56 and increases to 0.63 using

the extended two state model. The small peak regions show the greatest difference between
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Figure 4.4: Histogram of Correlation Values for all Gene and all Promoter
regions using Single State Nucleosome Model. The distribution of correlation values
for a set of ~4800 genes across the entire genome is shows for gene regions and promoter
regions. Each region in a data set is correlated with the corresponding experimental data
and shown as a histogram of the number of regions with each correlation value (binned in
.04 ranges). Gene regions (spanning the annotated regions from SGD) are shown in red
(mean=0.17, sd=.22). The promoter regions (-500 to +100 around the annotated start site)
is shown in blue (mean=.31, sd = .32).

the two state nucleosome model and the single state nucleosome model as a result of the

smaller core nucleosome binding in this region.

4.5 Discussion

As the field of Biology continues to expand our knowledge and understanding, we must

re-evaluate the current models to incorporate the new data or capture alternative theo-

ries. I have taken the new knowledge of the dynamics involved in nucleosome formation

and re-examined the modeling assumptions used in the current state-of-the-art nucleosome

occupancy models. I have extended the models to include the dynamic formation of the

nucleosome by creating multiple biologically derived states in nucleosome formation within

the steady state COMPETE model. I have shown that the extended model is able to more

closely match the experimental data on both the whole genome and at individual promoter

regions. Transcriptional regulation is a complex system of dynamic interactions occurring

within a cell. Steady state modeling methods attempt to capture the behavior of a popula-

tion of cells as they alternate between distinct configurations of components bound to the

DNA. The models are able to capture the interesting peaks within the nucleosome depleted

regions near CLN2 and could represent the dynamics of chromatin remodeling. Nucleo-
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Figure 4.5: Chromosome XVI 66000..70000 showing experimental nucleosome
occupancy data from (Lee et al., 2007). There are three positions highlighted with red
arrows where the experimental data shows an internal peak within a nucleosome depleted
region. The width of a full nucleosome (blue) and a core+full nucleosome (red) is shown
below each of these positions to give a visual indication of the width peak.

somes forming in the region can be shuttled away by remodeling factors. Depending on the

efficiency of the remodeling factors, only a few cells will have nucleosomes in that region at

the experimental time.

Each nucleosome component uses the same di-nucleotide scoring matrix to calculate the

affinity score, but they use different lengths of DNA sequence. The best scoring position

for the full 147 nucleotide nucleosome is not always the same position for the 87 nucleotides

of a core nucleosome. The extended model shifts the probability of binding to adjacent

positions where the smaller nucleosome would bind. This shift results in the nucleosome

occupancy predictions having better correlation to experimental data across large regions of

DNA. I assumed that there would be a subset of genes or gene regions that would correlate

better with one model than the other. However, I was not able to find a definitive subset. I

divided the genome into regions by gene expression levels, by gene lengths, by genes known

to be regulated by modeled TFs, and by regions containing the nucleosome signature profile

shown in Figure 4.7. There was no significant difference between the two models for any

of these subcategories. This may be related to another observation about the correlation

values. I observed that the correlation values are increased across large regions, but when the

correlations are performed over small windows of only a few nucleosomes, the differentiation
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Figure 4.6: Chromosome XVI 66000..70000 showing model with one state nu-
cleosome only (blue dashed line) and the two state nucleosome model(red solid
line). The three positions (describe in figure 4.5) are highlighted with markers showing
width of core nucleosome (red) and full nucleosome (blue) sizes. The full nucleosome model
does not capture these sub-peaks, but our core nucleosome model captures the probability
of a core nucleosome in these areas. The overall correlation in this region between the
experimental data and the one state nucleosome model is 0.55, while the correlation of the
two state nucleosome model and experimental data has increased to 0.60.

of the correlation scores between the models is lost. The Pearson correlations measure how

well the general patterns or trends of increasing or decreasing occupancy matches across

all positions. When correlating a large region, the minor fluctuations are smoothed, but

correlation scores across smaller regions are still sensitive to these fluctuations. The gene

and gene promoter regions are relatively small when compared to the length of a whole

chromosome. The reason that I have not been able to cluster some of these regions may be

that the signal is lost when focused on the small regions of only a couple nucleosomes.

The transition between the two nucleosome states is currently modeled as independent

transitions from the unbound state (Figure 4.1). This means that DNA bound in a core

nucleosome does not have a higher probability of becoming bound in a full nucleosome.

Extending the model to allow transitions directly between the two nucleosome states (direct

transition from state C to state N) may increase the extended model’s prediction capabilities.

This modification would allow high affinity sites for the core nucleosome to increase its

occupancy, shifting more probability away from the other full nucleosome positions.

The size of the DNA linker between nucleosomes is a fixed length in this HMM. The in

vivo length of DNA between nucleosomes is a function of nucleosome affinity and chromatin
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Figure 4.7: Chromosome XVI 66000..70000 showing model with one state nu-
cleosome only (blue dashed line), the two state nucleosome model(red solid
line), and experimental occupancy (gray line). See figures figure 4.5 and figure 4.6
for descriptions.

remodeling activity and therefore is not constant across the whole genome. The correlations

between model predictions and experimental data are strongest where the regularity of nu-

cleosome phasing matches the model parameters. When the length of the linker is modified

in the models, the locations where the models highly correlate is also modified. The models

would need to incorporate the effects of remodelers to account for this dynamic behavior.

It is difficult to extend a HMM to model the movement of states through the DNA. It

would require multiple copies of the HMM for each position of the moving object, which

would create an exponential explosion in the state space and therefore is a computationally

unrealistic solution.

Transcription factors change the local nucleosome binding probability at location of high

transcription factor affinity. In the modeling examples I have presented, only a small set
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of transcription factors were included. Many of the other transcription factors are known

to bind and affect the nucleosome occupancy in gene promoter regions. The correlation

of prediction to experimental data did not increase as more factors were introduced into

the model. This may indicate that the promoter regions are already being occluded by the

factors even though the transcription factors may only have weak affinity in the region.

Addition of more factors may create an over abundance of nucleosome exclusion which

would effect the placement of many adjacent nucleosomes.

As more components are added to the models there is an increase in the number of

variables (concentrations and affinities) that can be adjusted to maximize the correlations.

These variables allow more flexibility in the models, and as the number of variables increases

in a model, there is more potential for overfitting the model to the experimental data. I

have not attempted to solve the model and find the parameters that are the best fits to the

experimental data.

I have also added the core nucleosome to the models generated by my modeling frame-

work (presented in Chapter III). Using this completely different modeling method, I also

observed an increase in correlation values. Although I have not been able to find a distinct

subset of regions where the two state model works better or to find the cause for the in-

crease in correlation, it seems that there may be a biological behavior that these models are

partially capturing.

While the simple dynamics of nucleosome formation can be captured using steady state

models, there are regions along the genome where components actively modify the chromatin

structure. Chromatin remodelers can evict otherwise stable DNA binding factors or actively

move them along the DNA to less favorable positions. The behavior of these components

affects not only the state transitions at a local position, but also the state transitions at

many adjacent positions along the DNA. The behavior of this type of dynamics cannot easily

be captured using a HMM or other steady state modeling methods. It requires a change

in the modeling perspective from population averaged behavior to behavior of a single cell.

Simulations of the events occurring along the DNA can easily capture the dynamics of
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multiple components simultaneously changing positions along the DNA. This was a major

motivation for creating the modeling framework I presented in Chapter III.

4.6 Conclusion

I have extended a state-of-the-art steady state model, COMPETE, to include the dy-

namic formation of the nucleosome by creating multiple biologically derived states in nucle-

osome formation. The results show that the extended model is able to more closely match

the experimental data on both the whole genome and at individual promoter regions.

Every chromosome correlates better with the two state model than the one state model.

There are specific loci within the genome where the two state model clearly captures the

diversity within the experimental nucleosome occupancy data better than the one state

model. I was not able to find features of a subset of genes or gene promoters where the

two state or one state model would out perform the other. This may be due to the fact

that smaller regions of DNA do not show the difference in correlation values between the

models.

The increased correlations with experimental data was also observed when a additional

state for the core nucleosome was added to the modeling framework described in Chapter III.

It appears that these models may be capturing a biological behavior as both methods have

an increased correlation.

111



CHAPTER V

VISUALIZATION AND EDUCATION

I hear and I forget.
I see and I remember.
I do and I understand.

Confucius (551 BC - 479 BC)

Most of the work summarized here comprises parts of Aims 2 and 3 in a National Science

Foundation grant (ABI 1262410) on which I was a co-author. The goal of the grant was to

create a teaching tool for transcriptional regulation. In the grant aims, we envisioned a game

that allowed student interaction in creating DNA sequences, simulating the regulation for

the given sequence, and visualizing the results as animations. Through direct manipulation

of the DNA sequence, students would gain an understanding of the difficulty of obtaining

desired phenotypes in a complex environment.

Imagine the scenario where a student is given an expression profile for a gene. The pro-

file shows how the expression changes over time given a transcription factor concentration

change over time. The student is then asked to recreate the expression level by designing

a regulatory circuit and simulating the results for changes in transcription factor concen-

tration. The student would create the regulatory sequence using a drag and drop interface

to place different regulatory elements (components) into a custom DNA sequence around

the gene. Components for all the different transcription factors, general transcription fac-

tors, nucleosome affinity, and RNA polymerase dynamics are available for inclusion in the

model. The student can watch animations of the molecule interaction simulations, examine

summary plots of the results, and compare these to the desired results. The student can

experiment with different mechanisms until the simulated results match the desired profile.

As the students interact with the mechanisms, they obtain a much deeper understanding

of how these mechanisms work and interact.

The value of tools for educating both researchers and students is dependent on two

tasks: 1) achieving reasonably biologically realistic simulations of transcriptional regulation
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mechanisms and 2) creating viable dynamic visualizations that convey meaning given the

large amount of interactions that occur.

In this chapter I show my work on integrating research and education that addresses

the dynamic visualization aim. My approach for understanding transcriptional regulation

assumes that all users, from expert researchers to high school students, benefit from tools

designed to aid in understanding the complex system of transcriptional regulation. I am a

proponent of an interactive, hands-on approach that brings together powerful simulations

with quality visualization, which are key to understanding complex systems. My work pro-

motes teaching, training, and learning while providing an outstanding training opportunity

to promote interdisciplinary research at the confluence of Computer Science, Molecular

Biology, and Education.

My work has included a number of projects that address the use of visualization in

all stages of scientific research and education. I was involved in bringing computational

thinking into classes at the K-12 level through an NSF funded ECSITE project and work-

ing with the University of Colorado undergraduate International Genetically Engineered

Machines (iGEM) team, which provides intense interdisciplinary undergraduate internships

in systems biology. I also taught an introductory programming class for biologists using an

inverted classroom, utilizing video lectures so students can ‘hear’ and ‘see’ the concepts.

I have produced a short introductory video that describes the basic concepts of transcrip-

tional regulation that includes the often ignored concepts of stochasticity and the dynamics

of the transcriptional machinery. I have also created a graphical representation for describ-

ing interactions between model components and visualization of simulation results using

character graphics and animations.

5.1 Introduction

The best way to understand complex systems is to interact with the system. Experi-

mental approaches allow one to make changes to DNA sequences of genomes and measure

the impact of these changes on the transcription process. While powerful, these experi-

ments may take days or weeks in the laboratory. It would be better for teaching purposes
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to be able to make changes to DNA and simulate the anticipated transcriptional response.

Tools for simulation, visualization, and interaction with models are integral to enriching our

understanding of transcriptional regulation. These tools will be critical to advance research

in transcriptional regulation and as teaching tools. This approach has been used in Physics

(Wieman et al., 2008) and Biology for protein folding (Cooper et al., 2010).

There are many complex systems in the world that we must deal with everyday. We

perceive the world through vision and we even communicate via vision, as words alone on a

page are often insufficient to communicate or understand complex interactions. To aid the

complete understanding of complex concepts, we include images that explain and highlight

the important ideas. Our visual sense is a highly developed process that can bring insight

and understanding to many complex systems. The old saying “a picture is worth a thousand

words” shows that we have understood the importance of images for a long time.

Scientific research is an iterative process of forming a hypothesis from current knowledge,

designing experiments to test the hypothesis, collecting data from experiments, analysing

the data, and communicating the results. Unfortunately, visualization of scientific data

is usually only used in the last step of the scientific process to communicate the results

to others. The power of visualization can provide the understanding and inspiration for

greater advancements if it becomes an integral part of the iterative scientific process as an

exploration tool (Rinaldi, 2012; Fox and Hendler, 2011).

Biology is so complex and multifaceted that almost every new technology and experi-

mental technique requires a new visual framework for representing and presenting the new

and highly detailed data. The mistake made by many computer scientists outside of biol-

ogy is thinking that general principles will solve all the problems in biology, when the real

challenge is to adapt those principles to specific experimental situations (paraphrased from

O’Donoghue, Rinaldi (2012)).

Because Biology is a complex system and we cannot directly observe its complexity, we

create models of how we think a process works and attempt to validate the model through

experimentation (Figure 2.1). Visualization can be used at each step of this iterative process,
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making it easier to communicate the intentions when building models, as well as interpreting

the results.

5.2 Contribution

This section reiterates the contributions for this chapter. See Section 1.3 for a complete

list of my contributions. This work comprises part of Aims 2 and 3 in a National Science

Foundation grant (ABI 1262410) on which I was a co-author. The ASCII visualizations of

the DNA states are described in a manuscript under review in IEEE Transactions on Compu-

tational Biology and Bioinformatics as ”A modeling framework for generation of temporal

and positional simulations.” The educational video (http://dowell.colorado.edu/vizgrp/)

was entered into the National Science Foundation’s Visualization Challenge for 2014. The

application for visualizing proteome conservation across bacteria was published in BMC

Genomics: Rokicki, J., Knox, D., Dowell, R. D., and Copley, S. D. (2014). “CodaChrome:

a tool for the visualization of proteome conservation across all fully sequenced bacterial

genomes” (doi:10.1186/1471-2164-15-65).

• Produced a short introductory video to describe the stochastic nature

of the transcription process and the dynamics of the transcription pro-

cess to be used as teaching material for undergraduate introductory bi-

ology courses. There are two concepts that this video uniquely addresses: the

stochastic nature of the transcription process and the dynamic behavior of the tran-

scriptional machinery that contributes to transcriptional regulation. This video ex-

plains the basic concepts behind transcription as a necessary biological process that is

the first step in creating proteins in a cell. It visualizes the complex interactions

of transcription factors, nucleosomes, and the transcriptional machinery with the

DNA, including the often ignored mechanism of transcriptional interference. The

video was created in conjunction with a summer internship program for undergrad-

uate Computer Science students (Michelle Soult, Catherine Dewerd, Hayden Berge)

and submitted to the National Science Foundations’ Visualization Contest in 2014

(www.nsf.gov/news/special reports/scivis).
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• Created a language to abstractly describe component interactions as

graphs. The Petri net graphs represent the component states and state changes

that occur with each interaction. The language describes the syntax and semantics

for abstract templates and variable substitutions used to generate multiple related

interactions for each abstraction. This allows complex models to be generated from

less complex abstract interactions.

• Created an ASCII visualization of configuration of components bound to

the DNA at each time step of a simulation. Every time point of the simulation

provides a snapshot of the configuration of factors bound to the DNA, which can be

used to reveal patterns of behavior not seen in summary results. From the output

of the model simulations, I generate an ASCII visualization of the configuration of

factors bound to each nucleotide of the DNA at each time step. The state of each

position of the DNA is uniquely represented as a single character linearly in a line of

text. The movement of factors along the DNA can be inferred by the movement of

factor positions in consecutive display lines.

• Created an animation of the component interactions based on the inter-

mediate simulation results. The simulation results can be interpreted as a script

for component movement. Each time point specifies the configuration of components

along the DNA. By inferring the movement of components between time points, a

trajectory for individual components can be calculated. A visualization framework,

provided by Unity, was used to manage the virtual environment and display of in-

dividual component movements. The goal of the animations was to provide visual

feedback on the cellular behavior based on the modeling parameters. Ultimately, the

animations would be used in a teaching tool for students studying transcriptional

regulation. The animations were created in conjunction with a summer internship

program for undergraduate Computer Science students (Chad Bryant, Emily Owens,

Malcolm Duren).
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• Mentored a fellow graduate student (Joe Rokicki) in the creation of a tool

for the visualization of proteome conservation among bacterial genomes.

The relationships between bacterial genomes are complicated by rampant horizontal

gene transfer, varied selection pressures, acquisition of new genes, loss of genes, and

divergence of genes, even in closely related lineages. As more and more bacterial

genomes are sequenced, organizing and interpreting the incredible amount of rela-

tional information that connects them becomes increasingly difficult. CodaChrome is

a user-friendly and powerful tool for simultaneously visualizing relationships between

thousands of proteomes recorded in GenBank. The relationships between a bacterial

proteome of interest and the proteomes of every other bacterial genome are visual-

ized as a massive interactive heat map. published in BMC Genomics: Rokicki, J.,

Knox, D., Dowell, R. D., and Copley, S. D. (2014). “CodaChrome: a tool for the

visualization of proteome conservation across all fully sequenced bacterial genomes”

(doi:10.1186/1471-2164-15-65).

5.3 Educational Videos

5.3.1 Inverted Classroom

Today’s students have expectations of instantaneous access to small units of information

and know that information can be delivered as needed. However, they face learning and

combining diverse subjects to solve the problems of the world. Learning programming skills

is comparable to learning other laboratory science skills. The concepts can be introduced

during a lecture, but learning is obtained only after application of the concepts, usually over

and over, until students gain the skills necessary to produce a desired result. The student is

expected to try and fail often, spending many hours of hard work only to fail. It is during

those hours, when students are working alone and encountering barriers to their progress,

where the best teaching opportunities occur.

To take advantage of those teaching opportunities, I used an inverted or “flipped”

classroom for teaching computer programming. Traditionally, a lecture is given live in a

classroom and is followed by students performing homework, often alone and struggling. An
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inverted classroom provides prerecorded lectures that are viewed away from the classroom,

while class time is used for homework and active learning methods that increase student

engagement and result in a deeper understanding of concepts while gaining a mastery of

the skills. Together with Phil Richmond, a talented recent graduate and professional re-

search assistant in the Dowell laboratory, I created a set of videos where the students

not only hear the information, but can see the the concepts being used. Prerecorded

videos allow students to progress at their own rate, re-watching and pausing as needed

(http://dowell.colorado.edu/educationpython.html).

5.3.2 Transcriptional Regulation Video

Visualization of complex biological systems is difficult because many different compo-

nents are working simultaneously. While it is difficult to describe these interactions within

text, motion pictures provide a platform to convey the behavior of complex interactions.

Video can show an interaction in different orientations or from different perspectives and

viewers can replay the video to focus on different aspects, until they obtain a thorough

understanding of the concepts.

A quick search of teaching videos for transcriptional regulation reports several hundred

short videos are available. However, I did not find any that focused on the stochastic nature

of transcription and its regulation. In the summer of 2014, I managed a group of talented

undergraduate computer science students in an internship program. We produced a five

minute video highlighting the stochastic behavior of the transcription process and the often

ignored transcriptional regulation behavior of interference (Figure 5.1).

Although the stochastic nature of the cellular systems is understood, it is not usually

taught at the undergraduate level and the concepts of transcriptional regulation are typically

taught from textbooks with static images. Most of the dynamic and stochastic nature of

the transcriptional process, such as factor competition and transcriptional interference, are

abstracted away to produce these static pictures. To provide an introduction to these

concepts, I lead a team of undergraduate students to produce a short video that specifically

portrays the dynamics and stochastic processes and higher level regulation concepts.
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(a) (b)

Figure 5.1: Screenshots from video on Transcriptional Regulation. a) Screen-
shot from video showing transcriptional machinery (green) and nucleosome (yellow histone
octamer) interactions with DNA. b) Screenshot showing transcriptional interference.

The video explains the basic concepts behind the dynamic process of transcription.

It visualizes the complex interactions of transcription factors, nucleosomes, and the tran-

scriptional machinery with the DNA. This video is unique as it demonstrates the dynamic

regulation of transcriptional interference, an important but often overlooked aspect of reg-

ulation.

The animation in the video shows how the interactions of individual molecules within a

cell are thought to behave. The combined action of individual components provides insight

into the dynamics and stochastics of the transcriptional process. Models and colors were

chosen to optimize the learning of concepts while remaining at a level of detail understand-

able by the target audience.

We designed our video to reach a target audience of undergraduate students studying

introductory biology. The terminology has been taken from concepts in the current text-

books and extended to include the new ideas conveyed in this video. The narrative builds

in complexity and reinforces new concepts with visuals.

The development of the video followed the same process as used in the creation of an-

imated films. A storyboard was created to address the concepts that were to be covered.

From the storyboard, the individual scenes were staged, action and movements of com-

ponents defined. Next the individual components were created as simple 3D objects that

could be manipulated using Autodesk Maya 3D computer graphics software. These simple
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representations were used to create the movement and interaction of components to capture

teaching concepts. Once the general flow within a scene was defined, the representation of

the components was refined to create more realistic complex structures, lighting and shading

were added, and the voice over text was recorded. The integration of voice and animations

requires the adjustment of timings of both the narrator and the animations to produce the

final video.

5.4 Visualization of Simulation Results

The traditional paradigm for modeling transcriptional regulation has focused on the

individual components involved and is usually achieved using mathematical models. These

models are based on a population averaged response to the initial conditions and predict

changes of individual component concentrations over time. But, there is growing evidence

that transcription is regulated not only by the individual components, but also by the

competition among all components for the DNA. It is the stochastic, temporal and spatial

interactions of these components that ultimately control the transcription process within

each individual cell. Understanding this new interaction model of transcriptional regulation

requires a paradigm shift from modeling the population average cell to modeling the molec-

ular events within a single cell. We need tools that can model the molecular interactions

for any DNA sequence and visualize those interactions along that DNA.

The modeling framework in Chapter III describes a tool for generating models and

simulating the transcriptional regulation behavior for any DNA sequence. The simulation

engine produces a list of molecule counts for each reactant species at each time point in

the simulation. The reactant species are created by the modeling framework to represent

the different states of each DNA position. Each of the DNA positions can only be in one

state at a time, therefore the molecular counts represent a binary value for each possible

state of the DNA position (Figure 5.2). The SRB-Visualizer interprets the state counts to

determine the higher level abstraction of components bound to the DNA.
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Figure 5.2: ASCII visualization of a single time point. The state of the simulation
is recorded for each time step of the simulation (y-axis) and can be interpreted by under-
standing the states generated by the framework to determine the current configuration of
factors bound to the DNA (x-axis). Here I show a single simulation time point example
from a simulation that included 3 transcription factors, nucleosomes, and the transcrip-
tional machinery. (a) A simple ASCII representation of the high level cartoon depicting
the gene (blue rectangle) and transcription start site and direction (arrow). Each character
summarizes 10 nucleotides of the DNA.

Symbol Description

* bound transcription factor

==} bound transcriptional machinery (position not transcribed)

==] bound transcriptional machinery (position transcribed, waiting to advance)

(.............) bound nucleosome. Nucleosomes are further labeled as binding (b), unbinding (u), or
stable (n) to reflect the intermediate states of nucleosome formation.

(b) An alternative representation of the ASCII characters, redrawn into cartoon represen-
tations of the DNA configuration with transcription factors (triangles in red and orange),
nucleosomes (blue oval), and the transcriptional machinery (green teardrop).

5.4.1 Character Graphics

An underlying concept of my modeling framework is that DNA is a long connected

serial sequence of positions and each of those positions can only have a single component

bound at any particular time point. Using a single character to represent the state of each

DNA position allows the entire sequence configuration to be represented in a single line of

characters (Figure 5.2). The SRB-Visualizer produces a series of component configuration

lines, one for each time point of the simulation (Figure 5.3).

Using character graphics to represent the state of the DNA at any time point requires

the dynamics of binding and the movement of components along the DNA to be inferred

by the viewer. When the time points are viewed as a series (Figure 5.3), the movement of

a component along the DNA is seen as a positional shift of the component from one time

point to the next. Over a large number of time points the movement and dynamic behavior

can be conceptualized. Figure 5.3(a) shows a character representation for the configuration
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of factors bound to a segment of the DNA sequence for individual time points. The repre-

sentation for the transcriptional machinery can be seen to move to adjacent positions when

scanning down through the stacked time points. The movement can be inferred from the

consecutive time points and knowledge of the component behavior.

Figure 5.3: Visualizing the DNA configurations at each time step of a simula-
tion. The state of the simulation is recorded for each time step of the simulation (y-axis)
and can be interpreted by understanding the states generated by the framework to determine
the current configuration of factors bound to the DNA (x-axis). Here I show an example
of a simulation that included 3 transcription factors, nucleosomes, and the transcriptional
machinery. (See 5.2 for legend of the symbols). (a) A simple ASCII representation where
each character summarizes 10 nucleotides of the DNA. When the image is viewed as a
whole, scanning from top to bottom, I observe movement of a single transcriptional ma-
chine along the DNA and pausing at a nucleosome with perhaps strong sequence affinity.
(b) An alternative representation of the ASCII character representation in a cartoon form.

5.4.2 Animations

An animation of the movement would provide an explicit visualization of the dynamics.

Using the location of components at each time step, I can build a script for explicit instances

of components to appear on stage, move to specific locations over time, and move off stage.

The script can then be used to create an animation of components interacting with the

DNA.

Working with a group of undergraduates during a summer internship program, a proto-

type application to generate animations was developed. Our solution interprets the results
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of the simulations to generate a set of component locations for each time point. These

locations are used to generate a set of movements for each component between time points,

which are fed to our display routines implemented in the Unify game engine. The prototype

animations renders simple 3D objects for each component (Figure 5.4).

5.5 Discussion

The visualization projects described above focus on conveying transcriptional regulation

concepts and displaying the results of simulations using either static images or animations.

These are still active research projects and I have reported the current status of these

ongoing projects. The creation of an interactive teaching tool for teaching the dynamics of

transcriptional regulation is the next step. The processing pipeline (Figure 5.5) has been

prototyped and needs to be integrated into a web frontend to handle students and lessons.

5.5.1 Visualizing the Interaction Network

I have described visualization of the simulation results, but there is also the visual-

ization of the abstract Petri nets and the resulting interaction networks. The modeling

framework creates a network of states and transitions between states that can be repre-

sented as a graph. With the help of a talented high school student, I have explored using a

popular visualization application, Cytoscape, to visualize the graphs. Cytoscape provides a

programmatic interface for network layout and adjusting the display features. It can even

be used to create new Petri net interaction abstractions with all the appropriate attributes

or parameters. We found that Cytoscape displays did not scale well to the millions of states

and interactions generated for large DNA segments and could only display a small subset at

any one time. Cytoscape does provide a good interface for displaying, creating, and editing

the individual interaction descriptions in a graphical environment.

5.5.2 Automated Conversion of Graphic Representations for Abstract Rules

Another ongoing research project is the automated conversion of a graphic representa-

tion of an interaction into a form that can be applied to a specific DNA sequence. In my

modeling framework, I use Petri net representations to describe the abstract interactions

used to generate the model rules (see Chaouiya (2007) for review of Petri nets). Petri nets
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(b)

(c)

(d)

Figure 5.4: Animation of the component configuration over time along a DNA
segment. The prototype animation using a game engine shows the same DNA segment
at four distinct time points. The nucleosomes are shown as ellipsoids (light and dark blue
depending on state). The transcription factors are small cubes (different colors for each fac-
tor). Transcriptional machinery is shown as a cylinder (different shades of gold depending
on state) can be seen to move along the DNA. a) Transcriptional machinery stalled, waiting
for removal of nucleosome in its path (right). b) Nucleosome has been removed, transcrip-
tional machinery resumes elongation. c) Transcriptional machinery continues transcription.
d) Factors bind again after the machinery has moved through the region.

124



Figure 5.5: Pipeline for creating simulation results for a given set of parameters.
Given a set of parameters (right edge of figure) to the backend server processes (in blue),
a model is built by the stochastic rule builder modeling framework and simulated by an
off-the-shelf simulation engine. The results of the simulation are interpreted to provide
component positions for each of the simulation time steps, which is passed to the frontend
TRApp application. TRApp interprets the movement of individual components along the
DNA from the time step component positions. An animation script is generated to describe
the movement of individual components that can be used to control the animation display.
The user can modify the parameter settings and resubmit new parameters to generate
another animation of the system behavior.

are designed to describe the inputs and outputs of an action in a graphical form (Figure 5.6).

The process of converting the individual graph descriptions of abstract interactions into code

is currently a manual process. To modify or enhance the model component behavior requires

programming skills. However, we can describe the abstractions in a computer readable form

and therefore the creation of rules directly from the descriptions can be automated.

Languages for describing biochemical interactions have been well defined for decades

(Hucka et al., 2008; Faeder, 2011). Petri nets are just one way of describing the interactions

from an action point of view (Figure 5.6). Standardized descriptive languages have been

developed to aid the development of Petri net description and simulation (Billington et al.,

2003; Iec et al., 2009). However, each modeling framework is creating an abstraction of an

explicit biological system using the standardized nomenclature.

125



Figure 5.6: Sample abstract Petri net for the unbinding of a factor from DNA.
Each TF binds to consecutive nucleotides for a length matching the area occluded by the
TF. Transcription factor unbinding consumes molecules of TF bound DNA for each position
and produces a molecule of the TF and unbound DNA for each position.

Here I describe the syntax and semantics of a description language for converting graph-

ical representations into explicit model rules. The syntax provides a means to parse the form

of the descriptions and the semantics provides the interpretation of the parsed instructions

to ensure the correct resolution of variables to generate explicit rules.

The Petri net descriptions provide a graphical description of the rules to be generated

based on abstract inputs and outputs that are dependent on the position within a DNA

sequence. To keep the model developer from needing to explicitly list the same interaction

at every position of the DNA, I create abstract rules that describe an interaction based on

a variable representing the current position of the DNA. When describing more complex

interactions that are replicated over a range of other variables, again I can write the simple

interaction with the assumption that a variable value will be iterated over a given range.

Each graph represents an interaction that consumes a set of nucleotides of DNA in a

particular state and produces the same set of nucleotides in another state. The abstract

interaction defines positions of the nucleotides from a single base position. Other abstrac-

tions may need to be applied multiple times at each base position for a range of variable

values.

126



Figure 5.7: Model definition includes variables at each level of description.
The model definition is comprised of a set of individually defined components, which are
described as a set of independent interactions. Each description there may be a set of vari-
ables on which the descriptions depend for generating the rules. The scope of the variables
is only within the object for which the variable is defined and that object’s descendants.

This preliminary syntax below describes how to specify the abstractions and variable

substitutions for each interaction description. The syntax was designed to handle all the

abstractions encountered in producing rules for the interactions described in Appendix I.

The model definition is comprised of a set of individually defined components, which are

described as a set of independent interactions (Figure 5.7). Along with each description

there may be a set of variables on which the descriptions depend for generating the final

rules. The scope of the variables is only within the object for which the variable is defined

and that object’s descendants. Therefore, different components or actions can use the same

variable name and override the local values.
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Figure 5.8: Preliminary Model definition syntax. The syntax describes the variables
and their values for each abstract interaction description. Three types of variables are
supported: Constants, Range variables that step incrementally through a series of values,
and Sets from which a variable is iteratively set to each value.

5.5.3 Syntax and Semantics for Abstract Rules

The syntax for describing the interactions with variables specifies where to place the

resolved value for each variable and how to specify the iteration of variable values. The

semantics describe how the variables values are set and how iteration of multiple values is

accomplished.

There are three types of variables in our framework: Constants that are defined once,

but used in a number of interaction rules; Range variables that step incrementally through

a series of values; and Sets from which a variable is iteratively set to each value.

Constants can be used to specify a value that is used in a number of independent

interactions, but may change depending on the model environment. For example, a rate

of interaction shared between many factors or group of rule definitions could be defined as

a constant. This is similar to using constants as a programming style to make it easier to

modify a single variable than to modify all the abstract rules in which the value is used.

Ranges of variables allow iteration through the values and generation of rules with

each variable value. The framework defines an explicit global variable, POS, that iterates

from 1 to length of the DNA, walking along the DNA and generates all the rules for each

position. Some interactions require the generation of multiple rules per position of the DNA.

For example, the rules for nucleosome linker maintenance (see Figures A.9-A.14) capture

the behavior of nucleosome formation that inhibits formation near another nucleosome.
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Therefore, a rule assigned to a binding nucleosome needs to look to see if there is another

nucleosome nearby. The same rule is being applied to multiple locations relative to the

current position along the DNA to make sure there is not another nucleosome within the

linker distance. We can define a RANGE variable to iterate through each distance for each

position of the DNA.

The linker maintenance for a nucleosome also uses a variable to vary the interaction

rate depending on the distance from the other nucleosomes. It is assumed that formation

immediately adjacent to another nucleosome is less likely than if the nucleosome is further

away. The rule rate can be described using the current distance to mediate the rate of

eviction for a forming nucleosome.

5.5.4 CodaChrome - a Proteome Conservation Visualization Tool

I assisted and guided a fellow graduate student in creating a visualization tool for re-

lationships between bacterial genomes. We developed CodaChrome , a one-versus-all pro-

teome comparison tool that allows the user to visually investigate the relationship between

a bacterial proteome of interest and the proteomes encoded by every other bacterial genome

recorded in GenBank in a massive interactive heat map (Figure 5.9). This is an open source

project and the software is freely available (www.sourceforge.com/p/codachrome).

Rokicki, J., Knox, D., Dowell, R. D., and Copley, S. D. (2014). CodaChrome: a tool

for the visualization of proteome conservation across all fully sequenced bacterial genomes.

BMC Genomics, doi:10.1186/1471-2164-15-65

5.6 Conclusion

The goal of my work has been to facilitate the understanding of the stochastic nature of

transcriptional regulation to provide a better understanding of how molecular interactions

lead to gene expression, how sequence changes cause transcriptional changes, and how

complicated combinations of regulation mechanisms can be designed to achieve desired

results.

In my work on integrating research and education, I have explored different visualiza-

tion methods for all aspects of the modeling process. I have provided a teaching video
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Figure 5.9: The CodaChrome Graphical User Interface. Salmonella enterica 14028S
was loaded as the seed organism. The rows were sorted by average proteome identity. The
portion of the heat map visualized in the CodaChrome Graph Panel is indicated by the grey
box in the Overview Panel. Lighter-than-normal vertical stripes represent large clusters of
proteins unique to the seed organism. Dark vertical stripes represent clusters of highly
conserved proteins. Buttons embedded in the control panel allow the user to interact with
the visualization of the matrix file. A slider at the top of the control panel allows the user to
zoom in or out. Replicon arrows and gene selection arrows indicate the alignment selected
and described in the information display panel. Finally, the percent identity threshold slider
allows users to filter alignments below a specified threshold. For this image, the threshold
was set to 20%. The slider also functions as a legend indicating how percent identities are
translated into color.
Rokicki et al. BMC Genomics 2014 15:65 doi:10.1186/1471-2164-15-65

for the stochastic and dynamic behaviors of transcriptional regulation. I have developed

methods for visualizing the behavior of individual components during a simulation through

animation. I investigated the automation of generating model rules directly from graph

descriptions, visual displays for defining the model interactions and viewing the fully gen-

erated network of interactions, and visualization of proteome conservation over all bacterial

genomes.

There are two concepts that the teaching video uniquely addresses: the stochastic nature

of the transcription process and the dynamic behavior of the transcriptional machinery. A

stochastic process is any process or series of events that occur with a particular probability.
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These processes are described by a series of random variables that describe the likelihood

of each event. Stochastic processes are not deterministic, but can be analyzed statistically.

The transcription machinery is dynamic because it changes its local environment and the

probability of localized stochastic events. Until our video, these concepts were not previously

shown together in a teaching video.

Most modeling frameworks for transcriptional regulation traditionally produce static

charts and graphs as the visualization output. These graphs represent the behavior of

cellular populations over time. A modeling framework that explores the details of the

regulation mechanisms of single cells must increase its complexity to create realistic models.

To make these complex models accessible by the general research community, alternative

methods for visualizing both the simulation results and model behavior are required.

Simulation of the generated models provides molecule counts for each of the component

states at each time step of the simulation. I have created an application to interpret the

state counts and produce a visualization of the configuration of factors bound to the DNA

at each time step. The results can be viewed as an ASCII character representation of

current state of each nucleotide of the DNA at each time step of the simulation. I have used

this representation to produce a cartoon animation of the sequence of interactions along a

segment of DNA.

While the individual interactions of the model system can be represented as anima-

tions, the overall results of a simulation must be summarized over all the time steps. The

simulation visualization application can also provide the time averaged results of each sim-

ulation, such as the summary of component occupancy at each position along the DNA, or

the summary across multiple simulations to allow comparison to the population averaged

experimental data.

The first step in building a model is to define the behavior of the components. I have

developed a graphical notation to describe the behavior of each component as interactions

with the individual DNA nucleotides. In my modeling framework (Chapter III), the conver-

sion of graphic descriptions into code representing the abstract rules is a manual process.
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I have developed a language syntax and semantics to describe the abstract interactions of

individual components, allowing automatic generation of code that will produce interaction

rules for specific DNA sequences. I have explored using Cytoscape for creating and editing

interaction definition in a graphical interface, as well as using it to visualize the full inter-

action network. Automatic generation of modeling rules from the graphical representation

of the interactions would allow any researcher to draw a graphical representation of any

abstract behavior and immediately build a model with that behavior.
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CHAPTER VI

CONCLUSION

The goal of my work has been to facilitate the understanding of the stochastic nature

of transcriptional regulation by switching from modeling of the individual mechanisms to

a model that encompasses the whole stochastic system. This approach allows for a better

understanding of how molecular interactions lead to gene expression, how sequence changes

cause transcriptional changes, and how complicated combinations of regulation mechanisms

can be designed to achieve desired results. My work has focused on two areas: modeling the

system behavior of transcriptional regulation mechanisms and the communication of these

behaviors to researchers and students through visualization and education.

6.1 Modeling of Transcriptional Regulation

I have captured the population averaged behavior for some of the nucleosome dynamics

during formation by using an extension to current steady state models. Current state-

of-the-art modeling methods are capable of capturing the population averaged behavior

of component competition and cooperation. These steady state models are successful at

capturing the competition and implicit cooperation among static components that bind

and unbind DNA sequences. The question was, can they capture the dynamic behavior

of the components? Components, such as the nucleosome, are not static since they are

comprised of multiple sub-components that bind and unbind stochastically. I extended

one of the steady state models, COMPETE (Wasson and Hartemink, 2009), to capture

the dynamic states of nucleosome formation. The two state nucleosome model was able to

predict nucleosome occupancy better than the single state nucleosome model across large

regions of the genome.

The nucleosome dynamics are confined to the interaction of the histones with DNA

and do not affect the other components bound to the DNA. There are other components

that actively change the configuration of DNA bound components by moving along the

DNA and modifying the behavior of adjacent components. Chromatin remodelers can
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move nucleosome positions on the DNA, even moving them to less favorable positions than

they would bind to based on their inherent affinity. This movement may allow other DNA

binding factors access to DNA from which they would otherwise be occluded. Another

dynamic component is the transcriptional machinery that binds and progresses along a

strand of the DNA, presumably removing nucleosomes and transcription factors impeding

its progress along the DNA.

The population averaged behavior of dynamic nucleosome formation can be captured

by extending the current steady state models. However, these steady state methods cannot

easily be extended to model the dynamics of the transcriptional machinery or chromatin

remodelers. The dynamic changes of transition rates are both spatial and temporal to the

actual location of the dynamic component. This type of dynamics is difficult to capture

using an HMM as the movement of a component along the DNA would require a coupled

copy of the HMM to capture the transitions between configurations over both time and

space.

To capture the behavior of individual components, the competition between components

for interactions with the DNA, and more importantly, the dynamics of regulatory events

occurring within individual cells, I have developed a new modeling framework. The models

I constructed are biologically realistic representations and capture the inherent stochasticity

and dynamics of regulatory interactions.

I created a modeling framework to automatically generate a model for any DNA se-

quence. The modeling framework describes each individual interaction between components

as spatially abstract rules. The abstract rules are applied to any specific DNA sequence to

produce a collection of biochemical based rules describing the individual behavior of each

model component across that specific DNA sequence. My framework allows the models

to not only capture the population averaged steady-state behavior, but also capture the

dynamic behavior of individual components and the emergent behavior arising from the

components working together in a coordinated system.
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The behavior of each component is independently defined as a positionally abstract in-

teraction. These abstract interactions define the generic behavior and a means of calculating

the interaction rates depending on each specific sub-sequence of DNA. The abstractions are

applied to the specific DNA sequence being modeled to produce a complete set of inter-

action rules across the entire DNA sequence. The stochastic simulations of the rule-based

models will capture the configurations of the DNA at each successive time point and can

be used to visualize the dynamic behavior of components.

My work was motivated by the transcriptional regulation of the FLO11 gene in Sac-

charomyces cerevisiae. The regulation at that locus is a combination of simple regulation

interactions: competitive binding, nucleosome positioning, remodeling through transcrip-

tion machinery, and transcriptional interference (Figure 1.1). The abstract interaction rules

are able to capture each of the regulatory behaviors of the components as shown in the case

studies at different loci within the yeast genome (Section 3.5.1). I have shown case stud-

ies for models at specific loci to verify that the generated models can capture the known

behaviors at those locations. Each of these models combined the interactions of several

components and interactions were simulated over a time period to observe the patterns of

DNA configurations.

Unfortunately, the predictive power of my modeling framework is currently limited by

the relatively few known kinetics of DNA binding factors. While my original motivation

was to model the transcriptional switch of regulation at FLO11, there are many unknown

parameters required to model this circuit. Most of these kinetics parameters are difficult to

measure at single cell resolution. As technology advances, single cell experimentation will

further uncover component cellular kinetics. My flexible modeling framework can easily be

extended to incorporate new components or additional details of component behavior as

they are discovered or hypothesized.

My models will continue to advance towards biologically realistic and predictive models

of transcriptional regulation with the addition of the kinetic rates. However, at this time,

I consider my framework as primarily an exploration tool. It is designed to rapidly create
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models for different DNA sequences and components. This allows exploration of the effects

on the simulation results given changes in component concentrations, component behaviors,

or small changes in the DNA sequence (single nucleotide polymorphisms and structural

variants).

6.2 Visualization and Education

I have created animated visualizations to aid researchers and students in learning and

understanding the complex interactions of transcriptional regulation. The complex interac-

tions of biological processes are dynamic and depend on both spatial and temporal events

within a cell. Population averaged behavior can be abstracted from the individual cellular

behaviors and presented using static graphs and charts. As the experimental and modeling

perspectives change from population average to single cell behavior, the focus changes from

summary of events to the temporal sequence of events, which requires a more dynamic

method of presentation. My work has included the visualization of the behavior of these

complex systems as captured by the simulation of the models. The results are visualized

as a series of DNA configurations showing the location of DNA bound factors. The series

of configurations can be used to infer movement of components along the DNA, which can

be used to create animations of the behavior of system components. Many of the dynamic

behaviors of transcriptional regulation mechanisms are not currently taught as part of the

undergraduate curriculum, therefore I produced an educational video to teach the dynamic

and stochastic concepts.

The last aim proposed in our NSF grant was to merge the simulation and visualization

into an interactive teaching tool to provide students, educators, and scientists with the

ability to experiment, explore, and discover how different regulation mechanisms combine

to achieve specific cellular responses. The pipeline described in Figure 5.4 was the first

attempt to address this aim. Future work on the grant will focus on the teaching goals

and user interface to provide an engaging game-like environment in which to learn how

the cells control the stochastic behavior of components to achieve the desired results. The

visualization and animations are an integral part of this teaching tool. The animations
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highlight patterns of temporal behavior not captured in steady state models. Visualizations

can draw attention to the emergent behavior of the complex system, such as the access to

occluded DNA by the eviction of factors from an elongating transcriptional machinery.

6.3 Future Work

The limiting factor for making the models of transcriptional regulation is the lack of

knowledge about the kinetics of all the DNA binding factors. My models can easily in-

corporate this new knowledge and can illustrate the type of information that is missing

for individual components, including on and off rates, conformational changes in sequence

affinity, and behavior of chromatin remodelers. As the knowledge of these kinetics continues

to increase, my models will continue to advance towards biologically realistic and predictive

models of transcriptional regulation.

The steady state models provide a good population averaged calculation for the com-

petition of DNA binding. These models can be extended to capture some of the alternate

states of dynamic behaviors of components. It may be possible to add additional biologi-

cally realistic states for chromatin remodeling factors by using a function that moves the

nucleosome state probabilities along the DNA in the direction of the movement. The same

may be possible for modeling the transcriptional machinery by a similar shift of probability

along the DNA.

Chromatin remodelers are one of the major components missing is my current modeling

framework. These transcription factors are responsible for the movement of nucleosomes

along the DNA, which has a huge effect on the behavior of individual cells. Remodelers

change the configuration landscape, activating or inhibiting transcription depending on

the resulting configuration of factors bound to the DNA. They were not included in the

modeling framework because their binding and kinetics are poorly understood. However, it

is currently possible to model the the different proposed behaviors and allow researchers to

visualize the effects that alternate conditions have on the proposed behavior.

I have used a simple mechanism for describing and visualizing the individual interactions

of components within the framework. Petri net descriptions of interactions, represented by
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simple graphs, are used to generate the code that can be applied to any DNA sequence. The

current method used by the modeling framework requires programming skills to manually

convert the graph descriptions into code. I have shown preliminary work that describes

the syntax and semantics of a scripting language to automate this process. With this

language, anyone could create a graphical description of interactions and immediately build

models using that interaction, removing the need for programming skills. By automating

the conversion of graphic descriptions into computer understandable forms will allow the

“Draw a graph, Build a model” paradigm to be used by non-programming researchers to

enhance the modeling components.

The prototype for generating animations of the simulation results can be enhanced to

provide a better representation of the component behavior. The crude prototype can be

extended to provide better graphics and user interaction, thereby making it an invaluable

tool in understanding the dynamics of complex systems.

So far I have only created the underlying tools needed to meet the goal of our third

aim in the NSF grant. We still need to bring them all together into an interactive teaching

tool that provides the ability to experiment, explore, and discover how different regulation

mechanisms combine to achieve specific cellular responses. The application needs to support

the scenario where a student is given a profile for how a gene’s expression changes over

time and then asked to design a regulatory circuit to mimic that behavior. The student

would create the regulatory sequence using a drag and drop interface to place regulatory

elements (transcription factors, general transcription factors, nucleosome affinity, and RNA

polymerase dynamics) into a promoter region of the gene. The student can watch animations

of the molecule interaction simulations, examine summary plots of the results, and compare

these to the profile desired. The student can experiment with different mechanism until

the simulated results match the desired profile. As the students interact with the different

mechanisms, they obtain a much deeper understanding of how these mechanisms work and

interact.
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6.4 Final Remark

I envision a time in the not too distant future where we can understand and predict

the regulation of transcription for any sequence of DNA. This will allow researchers to

predict the behavior of perturbations, such as sequence changes or drug interactions chang-

ing transcription factor concentrations, over the whole cellular system. This path towards

personalized medicine will see the day when doctors will custom design drugs to recognize

individual cells by their genome and environment. Tumor cells have a modified genome

changing the cellular behavior that could be identified and individually marked for treat-

ment. My work is a small step along this path. It takes a step towards understanding how

to model the transcription behavior across large segments of DNA with all the variation

possible in single cells.
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APPENDIX A

PETRI NET GRAPHS

The behavior of the components can be captured in a graphical format known as Petri

nets. These descriptions are event based and are easily converted into the biochemical rules

needed by the simulation engine. Below are abstract descriptions of interactions, in graph-

ical form, between components of my framework. The Petri Net graphical descriptions

represent the component states as colored ovals and actions as blue rectangles. Each com-

ponent is shown in different colors: unbound DNA nucleotides in gray, transcription factors

in red, histones and nucleosomes in blue, and transcriptional machinery in green. DNA nu-

cleotides bound to other components are show in a pale color of the bound component.Each

interaction consumes and creates components. The preconditions for an action are listed as

molecules in a given state with arrows into the action. Arrows from the action to the new

states of the molecules indicate the post conditions. Multiple consecutive positions bound

by a single molecule are represented with a shorthand notation showing only the first and

last position. Many components bind to a fixed length of nucleotides which is typically

specific to that component, represented by Wcomponent (e.g. WTF for transcription factors,

WTM for the transcriptional machinery, and WN for nucleosomes).Often a component is

only required to exist for the rule to be activated and is not consumed. This could be rep-

resented by a bi-directional arrow, but here I list the component in both the preconditions

above the action and the post conditions below. In each case, I also provide the span, or

total number of nucleotides influenced by the application of this rule.
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Figure A.1: Transcription Factor Bind. Each TF binds to consecutive nucleotides
for a length matching the area occluded by the TF. Consumes a molecule of the TF and
unbound DNA for each occluded position. Produces molecule of TF bound DNA for each
position.
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Figure A.2: Transcription Factor Unbind.Consumes molecules of TF bound DNA for
each position. Produces a molecule of the TF and unbound DNA for each position
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Figure A.3: Transcription Factor Unbind by Watson strand Transcriptional
Machinery.When the TM is adjacent to bound TF, the TM presumably actively evicts
the TF. I need to increase the probability of the TF unbinding by adding an additional
interaction rule to complement the normal unbinding rate. Here the TM bound remains
bound while the DNA is vacated.
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Figure A.4: Transcription Factor Unbind by Crick strand Transcriptional Ma-
chinery.When the TM is adjacent to bound TF, the TM presumably actively evicts the
TF. I need to increase the probability of the TF unbinding by adding an additional inter-
action rule to complement the normal unbinding rate. Here the TM bound remains bound
while the DNA is vacated. Because the TM is unidirectional in its movement, I need to
have a rule for each edge of the TF being adjacent to the appropriate direction of TM.
This abstraction represents the TM moving along the Crick strand (decreasing position)
and adjacent to the right edge.
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Figure A.5: Recruit Crick strand Transcriptional Machinery Upstream.Many
TFs are known to recruit the TM to locations near the bound TF. This abstraction rep-
resents the recruitment of TM at the immediately adjacent position. my implementation
allows for the user to define the offset from the TF position for the TM binding.

154



Figure A.6: Recruit Watson strand Transcriptional Machinery Downstream.
All the TM abstractions must be specified for both strands. This is the complementary
abstraction to Figure A.5.
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Figure A.7: Nucleosome Binding and Unbinding.Nucleosome formation is similar
to the TF binding. A molecule of the histones binds to region of unbound DNA to pro-
duce a region of DNA forming a nucleosome. The length of the region is constant at 147
nucleotides. The nucleosome formation is a multistate transition: Unbound Binding Nu-
cleosome Unbinding Unbound. This figure represents the first and last of these states. See
Figure A.8 for the other two transitions.
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Figure A.8: Nucleosome Stabilization and Eviction.Nucleosome formation is sim-
ilar to the TF binding. A molecule of the histones binds to region of unbound DNA to
produce a region of DNA forming a nucleosome. The length of the region is constant at
147 nucleotides. The nucleosome formation is a multistate transition: Unbound Binding
Nucleosome Unbinding Unbound. This figure represents the middle two state transitions.
See Figure A.7 for the other two transitions.

Figure A.9: Nucleosome Linker Maintenance: Bound - Binding. Nucleosomes
have an inherent spacing that is maintained between adjacent nucleosomes. This is due
to physical and thermodynamic limitations. To ensure the linker spacing is maintained, I
describe rule abstractions to increase the probability of nucleosome formation being aborted
when another nucleosome is at an adjacent position. My implementation reduces the rate
of the unbinding as the distance between the nucleosomes increases.
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Figure A.10: Nucleosome Linker Maintenance: Bound - Binding with Linker.
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Figure A.11: Nucleosome Linker Maintenance: Binding - Binding.

Figure A.12: Nucleosome Linker Maintenance: Binding - Binding with Linker.
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Figure A.13: Nucleosome Linker Maintenance: Bound - Bound.

Figure A.14: Nucleosome Linker Maintenance: Bound - Bound with Linker.
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Figure A.15: Transcriptional Machinery Initiation and Eviction.The transcrip-
tional machinery is similar to other DNA binding factors. The binding transitions a molecule
of the TM and a region of unbound DNA to a TM bound state. When the TM is vacating
the DNA, the inverse transition is applied. Initiation is a stochastic signal that can be
represented in my framework by using recruiting TF (such as TBP). The TM is capable of
binding with any available DNA, however, the kinetics of this behavior is not well under-
stood and my implementation requires explicit initiation positions. (There is a duplicate
graph for the initiation of TM on the Watson strand)
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Figure A.16: Transcriptional Machinery Initiation stages and transition to Elon-
gation. Each TM moves through the TM states: Unbound Initiating (multiple consecutive
stages to represent the time required to build and activate a TM) Transcribing Transcribed
Transcribing at next position Transcribed Terminating Abort (vacating). At each of the
states it is possible for spontaneous aborting and eviction of the TM. (There are duplicate
graphs for the TM on the Watson strand)
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Figure A.17: TM movement one position.This abstraction represents the rate of
transcription. When the nucleotides are grouped together, this may become a significant
period of time between transitions. Moving (advancing) Transcriptional Machinery. Once
the DNA position has been transcribed, the TM can move along the DNA. This abstraction
represents the movement along the Watson strand (increasing position). When the position
is transcribed and the adjacent DNA position is available, the TM can move to the next
position and being transcribing. The previously occupied position is now available for other
interactions.

Figure A.18: Transcriptional Machinery aborting from transcribing or tran-
scribed.At each of the states it is possible for spontaneous aborting and eviction of the
TM. (There are duplicate graphs for the TM on the Watson strand)
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Figure A.19: Terminating and eviction of Transcriptional Machinery.The termi-
nation of the TM can be signaled by a sequence of DNA. This is a stochastic signal that can
be represented in my framework. However, the kinetics of this behavior is not well under-
stood and my implementation requires explicit termination positions. (There are duplicate
graphs for the TM on the Watson strand)

Figure A.20: Transcriptional Interference Collision of two elongating Tran-
scriptional Machinery.When two TM transcribing in opposite directions collide, my im-
plementation aborts both TM.
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Figure A.21: Transcriptional Interference Collision of elongating Transcrip-
tional Machinery and initiating Transcriptional Machinery. Proudfoot and col-
leagues (Sneppen et al., 2005) defined the collision of an elongating TM with an initiating
TM as sitting duck. This abstraction is encapsulates the behavior of the elongating TM
causing the eviction of an initiating TM. Because I model the initiation as multiple stages,
I must define the abstraction for each of the initiation stages.
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Figure A.22: Elongating Transcriptional Machinery evicting a Nucleosome.
Similarly to the TM eviction of a TF, the TM also actively evicts a nucleosome.
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