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Thesis directed by Prof Dr. Bradley B. Olwin and Dr. Robin D. Dowell

Skeletal muscle is critical for overall organismal health and well-being. As individuals age,

skeletal muscle function severely declines, resulting in reduced mobility, strength, and regenerative

capacity. This decline results in part from intrinsic and extrinsic deficits associated with muscle stem

cell function, but many open questions remain about the underlying drivers of skeletal muscle aging.

Understanding how aging affects skeletal muscle function has been difficult given that aging impacts

such fundamental biological processes as transcription and cell-fate determination, creating complex

phenotypes that obscure the underlying drivers of aging-associated changes. Thus, to uncover

the fundamental causes of skeletal muscle aging requires methodologies capable of comprehensive

assessment of alterations to biological systems that occur with aging.

In my thesis work, I describe features of aging-associated muscle decline by utilizing various

single-cell approaches and focusing on changes associated with muscle stem cells in aged mice. First,

I developed a framework for analyzing single-cell lineage tracing data obtained from a novel barcode

lineage tracing assay, from which I identified altered population dynamics during muscle stem cells

expansion in aged compared to young mice. Additionally, I employed an in-depth bioinformatic

analysis of single-nucleus transcriptomics to generate a comprehensive pseudotime trajectory of

myogenic differentiation in young and aged mice. Through this analysis, I detected fundamental

changes to temporally coordinated myogenic gene expression during aged mouse regeneration prop-

agating from muscle stem cells into myogenic progenitors, and finally into post-fusion myonuclei,

affecting gene networks critical for regenerative myogenesis. And lastly, I reveal that constitutive

activation of critical myogenic signaling succeeds in recovering young-like transcriptomic signatures

in muscle stem cells from aged mice, yet surprisingly this rejuvenation of muscle stem cells in aged
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mice alone was not sufficient to detectably improve muscle function, supporting the role of factors

extrinsic to muscle stem cells in contributing to depreciated skeletal muscle function in aging or-

ganisms. Thus, taken together, my thesis work provides important perspectives that add to the

fields’ understanding of skeletal muscle aging and that will help guide future studies exploring the

fundamental mechanisms of skeletal muscle aging.
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Chapter 1

Introduction

In this thesis, I sought to unravel features of skeletal muscle aging through single-cell analyses

of muscle stem cell transcriptomics and population dynamics in young and aged mice. My research

contributes important advances towards understanding skeletal muscle decline in aging by focusing

on fundamental changes to muscle stem cells and their behavior, and the effects of these changes

on progenitor proliferation, myonuclear maturation, and muscle function. Altogether, my research

explores novel and understudied perspectives on the underlying drivers of skeletal muscle aging and

offers areas rich for further investigations into the mechanistic details.

As one of the largest, most dynamic tissues in mammalian organisms, skeletal muscle enables

all physical movement including walking (locomotion), talking, eating, and breathing [1–3]. As

we age, our skeletal muscle function deteriorates, contributing to significantly declining standard

of living among elderly individuals [4–6]. While resident muscle stem cells play a critical role in

staving off muscular decline in aging, the full extent of how aging impacts muscle stem cell function

is unclear [7–10].

In this chapter, I introduce features of skeletal muscle integral for understanding and contex-

tualizing the work comprising my dissertation. I summarize the process of regeneration whereby

muscle stem cells expand after an injury to rapidly regenerate skeletal muscle tissue. I then dis-

cuss the current understanding of muscle stem cell heterogeneity and different models describing

their population dynamics, as well as describe how the fields’ understanding of muscle stem cell

functional organization is incomplete. Lastly, I will summarize what is known about the effects of
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aging on muscle stem cell function and how my work comprising this dissertation contributes to a

greater understanding of skeletal muscle aging.

1.1 Skeletal muscle

Skeletal muscle is a tissue present in all vertebrates enabling movement, eating, breathing,

and reproduction [1–3]. Contraction of skeletal muscle cells triggered by impulses originating in

the brain make possible most physical processes we associate with life [11], where evolution of the

capacity for intentional movement is proposed as a fundamental hallmark of living organisms [12].

Bone

Neuromuscular 
junction  
(NMJ)

Myotendinous  
junction  

(MTJ)

Pax7+ Muscle Satellite Cell  
(MuSC) Basal lamina

MyonucleiMTJ 
myonuclei

NMJ 
myonuclei

Figure 1.1: Anatomy of a myofiber. Cartoon schematic of a single myofiber with arrows demark-
ing associated Pax7+ MuSCs, the basal lamina, myonuclei, the neuromuscular junction (NMJ),
the myotendinous junction (MTJ), and myonuclei localized to either the NMJ or the MTJ.

Skeletal muscle tissue in mammals is comprised of several different cell populations. In hu-

mans and mice, the primary cell type in muscle is the known as the myofiber, long syncytial cells

containing the fundamental contractile units of muscle, sarcomeres [1]. Residing on the outside of

individual skeletal muscle myofibers are mononuclear myogenic cells called MuSCs, as well as non-

myogenic resident fibroblasts known as fibroadipogenic progenitors (FAPs), immune cells, schwann
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cells, tenocytes, endothelial cells, and others [13–17]. Altogether, these cells communicate and in-

teract in complex and synergistic ways such to enable appropriate tissue function and maintenance.

Inside of each multinucleated myofiber are hundreds of individual myonuclei (Figure 1.1)

[18,19]. Myonuclei, which are derived from myogenic progenitors during development or regenera-

tion, are post-mitotic and express the transcripts encoding proteins forming sarcomeres, as well as

other genes critical for myofiber function [16, 20–22]. In addition to sarcomeres, myofibers contain

additional specialized molecular structures referred to as the neuromuscular junction (NMJ), which

is the location at which nerves innervate individual myofiber, and the myotendinous junction (MTJ)

where myofibers attach to bone through tendons (Figure 1.1) [23–25]. Individual myonuclei localize

to these specialized structures and express transcripts specific for their formation and maintenance

(Figure 1.1) [16, 26–29]. The factors driving subsets of myonuclei to acquire and maintain distinct

transcriptional profiles despite existing within a common cytoplasm, as well as whether individual

MuSCs are biased towards production of distinct myonuclear subtypes, is not understood.

1.2 Muscle stem cells and regeneration

Skeletal muscle possesses a remarkable capacity to regenerate following stress or severe mus-

cle injuries [30]. Conferring the ability for muscle to regenerate are resident muscle stem cells,

MuSCs [30–32]. First named muscle “satellite” cells because of their intimate positioning along

the outside of myofibers, MuSCs are a distinct population of quiescent myogenic cells that reside

between the basal lamina and the cell membrane of individual myofibers (Figure 1.1) [32]. MuSCs

are characterized by their expression of the transcription factor (TF) Pax7, which regulates gene

networks necessary for maintaining these cells in a quiescent state [33, 34]. Upon a stimulus such

as stress or muscle injury, MuSCs become activated and enter the cell cycle, downregulating Pax7,

and upregulating expression of genes such as Myod1 and Runx1 which drive MuSCs to prolifer-

ate [30,35,36]. While small numbers of MuSCs are activated during homeostasis in the absence of

injury, it is likely that after an injury the vast majority of MuSCs become activated [37].

Immediately following a muscle injury, immune cells infiltrate muscle tissue, degrading dam-
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Proliferation

Fusion

Central 
nuclei

Peripheral 
nuclei

BaCl2

Figure 1.2: Diagram of skeletal muscle regeneration in mice. Quiescent Pax7 cells are
activated upon an injury, proliferate as mononuclear myogenic progenitors, before fusing to form
centrally located myonuclei. When myogenic progenitors fuse, all myonuclei are initially centrally
located, while myonuclei localized to the periphery of myofibers are only observed in later stages
of regeneration and mature myofibers.

aged myofibers [38]. Simultaneously, MuSCs activate and expand as mononuclear myogenic progen-

itors (also referred to as myoblasts), where they position themselves linearly within the persisting

collagen matrix (known as a “ghost-fiber”) which acts as a scaffold for the regeneration of new

myofibers (Figure 1.2) [39]. Eventually myoblasts exit the cell cycle and cease proliferating, differ-

entiate, and fuse, forming a regenerated myofiber where myoblast nuclei become syncytial myonuclei
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(Figure 1.2) [38]. Differentiated myogenic progenitors and maturing myonuclei express immature

myosin isoforms critical during regeneration (Myh3 and Myh8 ), before expressing mature myosin

isoforms in regenerated myofibers (Myh1 or Myh4 ) [16, 20, 40–42]. Myonuclei in newly fused my-

ofibers are centrally located within regenerated myofibers, while in mature myofibers myonuclei

are located along the periphery (Figure 1.2) [43, 44]. The factors determining and regulating this

particular myonuclear organization is incompletely understood [43, 45, 46]. Additionally, while the

transcriptional changes driving early activation and proliferation of MuSCs and myoblasts are well-

characterized, the changes that occur within differentiated progenitors and post-fused myonuclei

during regeneration is not clear given a lack of in vivo studies investigating myonuclear transcription

once progenitor fusion has occurred during regeneration [16,41].

While most MuSC progeny fuse and differentiate to regenerate the necessary numbers of

myonuclei required for mature muscle function, a portion of MuSCs undergo self-renewal divisions

to ensure the replenishment of the MuSC pool, conferring the capacity of muscle to respond to

further rounds of injury [47–50]. Self-renewal is characterized by MuSC divisions producing either

a progenitor cell determined for differentiation along with another another MuSC retaining its

ability to produce either more MuSCs or differentiating progenitors from additional divisions, or

two MuSCs [47,49–51]. Correctly balancing these opposing cell fate choices for differentiation and

production of myonuclei, or self-renewal generating additional MuSCs during regeneration, enables

skeletal muscles’ persistent capacity for regeneration even after multiple injuries [52].

1.3 Muscle stem cell population dynamics and heterogeneity

The regulatory mechanisms determining whether a particular MuSC lineage terminates in

differentiated myonuclei or self-renewed quiescent MuSCs, and how these cell fate choices are bal-

anced on a population level, is incompletely understood. Skeletal muscle is not the only organ

system possessing adult stem cells, and to understand MuSC population dynamics, clues can be

drawn from other tissues [53–57]. To understand paradigms employed by adult stem cell popula-

tions during homeostasis and regeneration, models have been proposed to explain how stem cells
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maintain a balance between proliferation and self-renewal. First, there is the invariant asymme-

try model, in which all cells proceed through identical asymmetric divisions, each resulting in a

single stem cell and a single differentiating progeny (Figure 1.3). In this model, stem cell clonal

diversity is maintained, and stem cell populations are not hierarchical or segregated into distinct

subsets. While this paradigm characterizes several adult stem cell compartments during mainte-

nance, this behavior is likely less well-suited for acute regenerative responses such as skeletal muscle

regeneration where large numbers of differentiated progeny are produced rapidly [55,56].

The alternative model is that of population asymmetry [53, 58, 59], which proposes that

stem cells are hierarchical, such that some stem cells proliferate as transit amplifying cells before

differentiating, while others proliferate as stem cells through self-renewal divisions [53,58,59]. This

paradigm is associated with a neutral drift of stem cell clones, such that over time individual clones

are lost to differentiation and there is a reduction in overall population diversity [53]. Stem cell

populations adhering to this model have the benefit of generating large numbers of progenitors (as

well as stem cells) rapidly but at the cost of clonal diversity [53,56,57].

Whether MuSCs dynamics more closely resemble that of invariant asymmetry or population

asymmetry has not been thoroughly settled. Initially, MuSCs were considered to be a homogeneous

population of cells [48,50,60,61]. In concordance with this, asymmetric self-renewal divisions have

been demonstrated as critical for maintaining MuSC pools [47,50,61]. On the other hand, MuSCs

are shown to proliferate through symmetric expansions as well, specifically after injury [39,48,61].

Thus, neither population asymmetry or invariant asymmetry can fully account for the diverse

range of observable MuSC behaviors. Rather, the true nature of MuSC dynamics must incorporate

paradigms from both conceptual models of stem cell population dynamics, potentially accounting

for a shifting of the balance between the two during different processes such as maintenance or

regeneration.

Critical to unraveling MuSC population dynamics is the question of whether MuSCs exist

within hierarchical subpopulations with distinct propensities for different cell fates. Since the early

studies suggesting uniformity among the MuSC populations, evidence now strongly supports the
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Figure 1.3: Different types of MuSC divisions. Representation of different types of divisions
MuSCs (red) proceed through, where p is the probability of a division being symmetric and resulting
in two MuSCs. When p = 0, a model of invariant asymmetry occurs, when p > 0 & < 1, population
asymmetry occurs where a division has a probability of p

2 of producing two MuSCs or two amplifying
progenitors (beige).

contrary; that MuSCs exist within phenotypically distinct subpopulations with differing prolifer-

ative and self-renewing capacities [29, 61–66]. Subsets of MuSCs have been observed with higher

or lower proliferative potential based on their retention (or non-retention) of a fluorescent tag that

becomes progressively diluted during greater numbers of divisions [62]. But notably, there are

contradicting reports regarding whether these distinct transcriptional states correlate with func-

tional differences [29, 63]. For instance, expression levels of of Pax7, Myf5 (a critical gene driving

progenitor differentiation), and Pax3 (a gene critical for myogenic progenitors during develop-

ment), are all associated with different propensities for MuSCs to activate, proliferate, or self-

renew [29, 61, 63, 64, 66]. Consistent with these findings, MuSC clonal diversity is retained during

homeostasis but is lost during successive rounds of injury, suggesting clonal drift where hierarchi-

cal MuSCs are depleted as distinct lineages commit to differentiation [52]. Thus, while evidence

strongly suggests functional subpopulations of MuSCs exist, it is unclear whether these differen-

tial proclivities for certain behaviors are predetermined through intrinsic differences or rather are
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acquired stochastically from extrinsic factors upon stimulus such as an injury or isolation and cul-

ture. Moreover, the precise roles these different populations and their progeny have during muscle

regeneration has not been fully explored.

1.4 Skeletal muscle aging

As organisms ages, tissue function universally declines, ultimately resulting in death. Because

of the broad impact aging has on tissue function, to better understand the fundamental drivers of

aging requires a strategy capable of evaluating changes on a global level rather than simply looking

at individual genes or networks. Recent technological advances in experimental and computational

techniques have enabled unprecedented insight into the processes driving aging in ways that only

these systems-wide approaches can accomplish. Evidently clear through these contemporaneous

studies is that aging impacts processes such as transcription and cell function in ways only observ-

able when considering global transcription or cell populations as a whole [67–69]. Thus, applying

a broad lens to studying aging is imperative to reveal its underlying drivers.

Skeletal muscle function and regenerative capacity decline dramatically as individuals age

[6, 70]. Muscle in aged individuals is weaker, less resistant to injury, and less capable of adequate

regeneration after an injury [6,70]. At a molecular level, key anatomical structures within skeletal

muscle are disrupted including the NMJ and MTJ, suggesting disruptions in myonuclear transcrip-

tional regulation [16,20,22,28,71–73]. Additionally, in skeletal muscle from aged individuals, MuSCs

are less abundant, less proliferative, undergo less self-renewal, are prone to premature differentia-

tion, and are less responsive to critical myogenic signaling [8,74–82]. However, the mechanisms for

how disrupted MuSC function contributes to changes in myonuclear gene expression and mature

muscle function has remained unclear.

The heterogeneity among MuSCs described in the previous section has made unraveling dif-

ferences in MuSC behavior specific to aging a complicated endeavor. As the roles of different MuSC

functional subpopulations is incompletely understood, it becomes increasingly difficult to determine

if specific subpopulations are preferentially disrupted in aging, rather than aging uniformly impact-
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ing the entire MuSC population. Nevertheless, work has demonstrated that through successive

rounds of injury in aged mice, clonal complexity of MuSCs is reduced, suggesting loss of MuSC di-

versity and potentially loss of distinct progenitor populations [52]. Additionally, specific features of

MuSC function, including quiescence, proliferation, differentiation, and population balance appear

disrupted in aging [8, 52, 83, 84]. However, whether these affects are isolated to particular MuSC

subpopulations and their designated roles, or result from global changes affecting all MuSCs and

myogenic processes equally, has not been sufficiently investigated.

Efforts by our group and others to assess global changes to MuSCs during aging have revealed

that timing of myogenic progenitor expression is perturbed in MuSCs and progenitors isolated from

aged mice. These findings introduce the perspective that beyond just changes in MuSC population

dynamics, there is altered timing of transcriptional events necessary for activating MuSCs and

producing myonuclei drive aging-associated changes to myogenic progenitors isolated from aged

mice [74, 85, 86]. In other words, while MuSC cell fate determination may generally be conserved

as organisms age, the rate and trajectory at which these cell fates are acquired may be disrupted.

However, up to this point all experiments revealing differences in the timing of myogenic TF

expression had been done on cultured cells ex vivo [74,85,86]. When MuSCs are cultured, not only

are the mature myogenic states achieved during mouse muscle regeneration never obtained, these

systems fail to recapitulate the diversity of MuSC subpopulations and functions manifested among

in vivo MuSCs existing within their native environment.

The questions I address in this thesis include whether rescuing aspects of MuSC signaling,

which recovers MuSC number, proliferation, and capacity for asymmetric divisions, is sufficient

to recover muscle function in aged mice. Additionally, I explore how altered timing of myogenic

TF expression impacts myogenesis broadly in aged mice after an injury, describing a critical link

between disrupted processes in MuSCs and disrupted mature muscle function. And lastly, I describe

how changes in MuSC function in aging disrupts a significant expansion of a small subset of MuSCs,

supporting that population dynamics during and after muscle regeneration are perturbed in aged

mice. Taken together, I provide an extensive exploration of features of muscle regeneration that
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are altered in aging by focusing on MuSCs. Furthermore, I reveal a vast conceptual landscape

still needing to be mapped in order to gain a more comprehensive understanding of the underlying

drivers of skeletal muscle aging, as well as organismal aging broadly.



Chapter 2

MuSC population dynamics during aged mouse muscle regeneration

2.1 Chapter Note

All wet-lab experiments conducted for this project were conducted by researchers in the lab

of Dr. Bradley Olwin. A post-doctoratal fellow in Dr. Olwin’s lab, Dr. Monica Hall, along with

support from Dr. Robin Dowell and Dr. Mary Ann Allen all worked together developing the

barcoding strategy. All viral preparations and sequencing libraries were prepared by Dr. Hall. Dr.

Olwin and Dr. Hall, with intellectual contributions from Dr. Allen, contributed to designing the

novel barcode lineage tracing assay and overcoming hurdles in its development. The scripts required

for the initial data processing steps, where barcode reads are aligned and scored, were written by

Dr. Allen prior to my joining of the labs of Dr. Olwin and Dr. Dowell. Dr. Allen also conducted

some initial analysis of the barcode sequencing experiments prior to my arrival. My contribution to

this project was the development of a computational and statistical framework needed to process,

analyze, and interpret results from these barcoding experiments.

In addition to the barcode lineage tracing experiments described in this chapter, there are

also experiments designed and completed by a former post-doctoratal fellow Dr. Brad Pawlikowski,

Dr. Alicia Cutler, as well as a rotation student Rachel Gessner.

2.2 Introduction

During development and homeostasis, adult stem cells differentiate into tissue-specific termi-

nal cell types to form and maintain mature tissues and organ systems [87]. During aging or disease,
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this process of differentiation is disrupted, negatively impacting tissue maintenance and resulting

in pathological conditions including failure to regenerate and cancer [88, 89]. Studies suggest a

stem cells’ procession through significant numbers of cell divisions occurring over an individuals’

lifetime is associated with oxidative stress, accumulation of DNA damage, telomere shortening, and

increased risk of disease, indicating there are likely mechanisms to limit division numbers of adult

stem cells [58, 88, 89]. Thus, determining how stem cell populations balance division numbers to

ensure maintenance of healthy stem cell compartments, as well as sufficient numbers of differen-

tiated progeny to maintain tissue, is crucial for understanding how stem cell and tissue function

is affected as organisms age. However, addressing this question is difficult as it requires labeling

single stem cells with unique identifiers that persist in their progeny to accurately quantify their

division dynamics after a process such as regeneration is complete.

Lineage tracing in molecular and cellular biology is a term for all methodologies that attempt

to infer relationships between cellular lineages, diversity of lineal origins, and the cellular dynamics

responsible for producing those lineages [53]. Some lineage tracing techniques rely on the inheritance

of fluorescent tags, either linked to DNA, or as free diffusing molecules, to identify relationships

lineal dynamics [53]. Other techniques utilize DNA barcodes to label genomes of stem cells which are

sequenced following expansion and differentiation of the labeled stem cells to identify relationships

between clone size and clone diversity [90–92]. In these techniques, distinct methods are employed

to produce DNA barcodes themselves. One method uses endogenous barcodes, pre-existing DNA

elements that become mutated as cells divide, while other methods use exogenous synthesized

DNA sequences as barcodes that are virally integrated into the genomes of the cells from which

progeny are hoped to be tracked [53, 90, 91]. Additionally, barcodes can be either dynamic, in

which they change with successive cell divisions enabling generation of lineal trees, or static, in

which barcode sequences remain unchanged through cell divisions and thus provides insight into

clone sizes and population paradigms of cell lineages being tracked [53, 90–94]. While various

lineage tracing techniques exist that enable exploration of cell expansion and fate decisions, none

have been capable of accurately quantifying clone size and diversity of MuSCs and their progeny
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during regeneration [53,91,93–95] .

Unlike the majority of adult stem cell compartments, MuSCs are responsible for rapidly

generating large numbers of differentiated progeny (>100s) after injury, and thus may exploit unique

strategies to balance the opposing cell fates choices of self-renewal and differentiation during these

periods of extreme stress. Lineage tracing experiments with MuSCs have yielded intriguing results,

yet none have provided direct quantification of how MuSC population dynamics are balanced during

regeneration [52,62,89,95]. The use of flourescent dyes that label all dividing cells by their linkage

to replicated DNA, including EdU, a nucleotide analog integrated into cellular genomes during

divisions, and flourescently tagged histones which label DNA and is inherited when cells divide,

have identified MuSCs with distinct proliferative behaviors [62, 64, 96, 97]. However, when labeled

cells undergo large numbers of divisions, EdU becomes diluted, such that cells dividing roughly 3

or more times will appear unlabeled [96]. Moreover, given these labels are present in all dividing

cells, they are not true lineage tracers, as they do not relate dividing cells to their clonal origins.

Alternatively, experiments have been conducted using mice genetically modified to continu-

ally express one of four fluorescent proteins in all progeny of Pax7+ MuSCs [52]. Thus, as MuSCs

within these mice proliferate and fuse into myofibers, the diversity of fluorescent proteins detected

in the cytoplasm of myofibers is correlated with the clonal diversity of progenitors they were derived

from. This study concluded that clonal complexity of MuSCs is reduced upon successive injuries,

supporting that clones are progressively lost through symmetric divisions and differentiation, in-

dicative of a model of population asymmetry [52]. While this study provided some of the most

potent evidence describing a paradigm of MuSC population dynamics during regeneration, there

was insufficient diversity of fluorescent proteins to comprehensively reveal clonal diversity among

MuSCs and myonuclei. For these reasons, the use of genetic barcodes, given their immense diversity

of potential sequences and their persistence in progeny through any number of cell divisions, is the

most promising form of lineage tracing to better understand MuSC population dynamics.

Nevertheless, most barcoding strategies are plagued by an underappreciated pitfall often

unaddressed in studies employing these techniques; that being they are incapable of quantifying with
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certainty that each unique barcode represents a single cell because of how barcodes are amplified for

sequencing and imperfect diversity of barcode libraries [53, 93, 94, 98, 99]. This amplification step,

while important for generating barcodes in sufficient numbers for detection, introduces amplification

bias, such that following amplification, the pre-isolation frequency distribution of unique barcodes

from the tissue is not maintained in the library that is ultimately sequenced. For these reasons, the

group of Dr. Bradley Olwin, with intellectual contributions from Dr. Mary Allen, developed a novel

barcoding strategy in which after individual barcodes are isolated, but prior to their amplification,

an additional unique DNA tag (a unique molecular identifier, or UMI) is attached to every individual

barcode. This addition of a UMI confers that after amplification, all barcodes with identical UMIs

can be computationally collapsed to 1, such that every unique barcode after this collapsing can be

interpreted as having derived from a single infected MuSC. This technique provides the only existing

means of accurately quantifying numbers of progeny from a single cell in vivo, and is applied here

to evaluate how MuSC populations balance lineage sizes and segregate cell fate choices.

For my thesis work, I developed a computational and statistical framework to model bar-

code frequency distributions after accounting for complex technical and biological variability across

experiments, as well as inherent bias in the barcode library itself. My findings, in combination

with additional experiments from our group and from other groups, support that subsets of MuSCs

expand disproportionately relative than others, establishing the existence of distinct MuSC subpop-

ulations in strikingly disparate proportions that exhibit opposing proliferative behavior following

a muscle injury. Moreover, it appears central myonuclei, which are produced in the first 4 days

post-injury (dpi), are clonally diverse and are predominantly products of only a few cell divisions,

while self-renewing MuSCs are clonally homogenous having proceeded through significant numbers

of divisions, a previously unknown feature of MuSC-mediated myogenesis after injury. Finally, I de-

scribe how the population dynamics appear disrupted during aged mouse regeneration, suggesting

that dysregulated population balance may contribute to regenerative defects that accompany skele-

tal muscle aging. These results are generally consistent with current paradigms, yet provide more

controversial findings as well by building on previous findings and providing the most quantitative



15

depiction of MuSC population dynamics in young mice, and how this balance may be perturbed in

aging.

2.3 Results

2.3.1 Single-cell lineage tracing strategy

To unravel the clonal dynamics of MuSCs following an injury, Dr. Bradley Olwin and Dr.

Monica Hall, with intellectual contributions from Dr. Mary Ann Allen, developed a novel barcode

lineage tracing technique capable of quantifying individual myogenic cell divisions post-injury (Fig-

ure 2.1). This strategy uses a modified avian leukovirus developed into the RCAS system to insert

random DNA barcodes into the genomes of quiescent MuSCs, which are then inherited by their

progeny (Figure 2.1A-B). After regeneration, DNA is then isolated from the muscle, and barcode

frequencies are assessed, revealing the minimal number of cell divisions the initially infected MuSC

underwent prior to differentiation or isolation.

The RCASBP(A) virus (referred to as RCAS) is only able to infect avian cells expressing

a TVA receptor [100, 101]. To enable MuSC infection with RCAS, mice were bred with the TVA

receptor gene inserted into the Rosa26 locus preceded by a lox-stop-lox sequence and possessing a

mutated ATG translational start site [102]. Thus, Pax7CreERT2/+ mice express expression of TVA

specifically in MuSCs following recombination (Figure 2.1C) [103].

RCAS viruses were engineered to possess a random barcode library of 1.6 ∗ 107 possible bar-

codes as well as a gene for a fluorescent protein used to visually confirm infected cells (Figure

2.1B-C). Barcode viruses are produced by transfecting DF1 chicken fibroblast cells endogenously

expressing the TVA receptor, expanding these cells, then harvesting and purifying virus by ultra-

centrifugation. The viral library is verified by infecting DF1 cells with 8-fold excess of the barcode

library and performing linear amplification PCR (LAM-PCR) followed by universal PCR to at-

tach sequencing adapters. Barcode DNA is then gel purified and prepared for Illumina sequencing

at read-depths of 60,000 per nucleus (Figure 2.1A). One of the critical novel innovations of this
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Figure 2.1: Diagrams associated with barcoding lineage tracing strategy. (A) Workflow
diagram of RCAS barcode lineage tracing strategy. Plasmid library is infected into DF1 chicken
fibroblasts, isolated, and injected into mice concomitant with a BaCl2 induced muscle injury. Ge-
nomic DNA is isolated, subjected to LAM-PCR, amplified, and sequenced. (B) Diagram of the
barcode cassette containing viral insertion sites (LTR), next generation sequencing adapters (green),
and a barcode sequence containing degenerate and consensus bases. (C) Mouse genetics enabling
expression of the TVA receptor in Pax7+ MuSCs. Pax7 expression and addition of tamoxifen
(Tmx) induces a Cre-mediated recombination, removing a STOP codon, and enabling the expres-
sion of the gene for the TVA receptor. Thus, Pax7+ cells will express TVA and can be infected by
RCAS.
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Figure 2.2: Diagram of barcode deconvolution using unique molecular identifiers
(UMIs). Mouse is injected with RCAS library (and BaCl2 for muscle injury), where individual
MuSCs are labeled with a unique DNA barcode (purple, green, blue). During regeneration, MuSCs
proliferate as myogenic progenitors before fusing and forming a chain of centrally located myonuclei.
After regeneration, genomic DNA is isolated from the mouse TA muscle and subjected to a single
round of LAM-PCR to add a unique molecular identifier (UMI) to each individual barcode. Bar-
code:UMI sequences are then amplified by universal PCR and sequenced. Identical barcode:UMI
combinations are deemed products of PCR amplification, and every unique barcode:UMI combina-
tion represents a single cell. Groups of identical barcodes with unique UMIs are considered derived
from a single infected MuSC that expanded to produce myogenic progeny during regeneration.
Clone sizes can then be assessed and organized into a frequency table quantifying lineage size.

barcoding strategy differentiating it from other techniques is the linear amplification PCR (LAM-

PCR) step which attaches a unique molecular identifier (UMI) to each individual barcode Figure

2.2). The step is critical in that it enables the bioinformatic deconvolution of PCR duplicates to

determine the true frequency distribution of barcodes in the muscle and thus the quantification of

the minimum number of cell divisions that occurred prior to a cell exiting the cell cycle or tissue

harvest (Figure 2.2).

Following sequencing of the barcodes, alignment and scoring of all reads was accomplished

using a script written by Dr. Mary Ann Allen where only barcodes with perfect matches to the
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designated consensus bases would be included for further analysis. These barcodes were then

organized into a frequency table once identical barcodes with identical UMIs were collapsed, and

identical barcodes with unique UMIs were deemed as part of a common lineage derived from a

single infected MuSC (Figure 2.2A-B).

2.3.2 Barcode frequency distributions in DF1 cells and mice

Altogether, two experiments were conducted in DF1 chicken fibroblast cells as controls where

barcode virus was added at 8x the multiplicity of infection (MOI) to assess diversity of the sequence

library. Additionally, 22 experiments were conducted in mice (n = 12, young; n = 10, aged; n = 17,

30 dpi; n = 5, 90 dpi). All 90 dpi samples were from young mouse experiments because of concerns

of aged mice not surviving 90 days after induced injury. From all 24 experiments ∼700,000 unique

barcodes were detected, and 2.5x107 total barcodes were sequenced (Figure 2.3A). These varied

across individual DF1 and mouse experiments because of changes in the sequencing depths (more

below). Overall, the number of replicates and numbers of barcodes sequenced were extensive,

confirming a sufficiently diverse barcode library and sufficient numbers of replicates to generate

biological conclusions.

Frequency distributions were assessed for each individual mouse or DF1 control experiment.

Distributions from DF1 experiments and in vivo mouse experiments consistently, and unexpectedly,

contained dramatic right skews, albeit to varying degrees. These long right tails result from the

majority of barcodes only being detected a few times in each of these experiments, while a small

subset of barcodes were detected hundreds, thousands, or tens of thousands of times (Figure 2.3B-

D).

2.3.3 Numbers of MuSCs in the TA muscle

The number of unique barcodes detected from the 22 mouse experiments varied widely de-

pending on factors such as sequencing depth and yield from isolation (Figure 2.4A). That numbers

of unique barcodes spanned over 50,000 in several mouse experiments posed a conceptual conun-
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Figure 2.3: Frequency distributions from barcode lineage tracing experiments in DF1
cells and mice. (A) Numbers of unique and total barcodes identified from 24 experiments (n = 2
DF1, n = 22 mice). (B) Frequency distribution of barcodes isolated from replicate 1 or (C) replicate
2 of DF1 control experiments. (D) Frequency distributions of barcodes from mouse experiments
where each color corresponds to an independent experiment.
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drum; previously it’s been proposed that between only 5-7 MuSCs exist along a given myofiber,

making total MuSC numbers in a TA muscle in the range of 20,000-30,000 (roughly 5,000 myofibers

per 1 TA muscle) [33, 80, 104]. The fact that numbers of unique barcodes sequenced were in and

beyond the estimated range of the total number of MuSCs in a TA muscle was problematic, as

this would suggest successful labeling of virtually all MuSCs in the TA muscle and sequencing

of all barcodes in our experiments. This was impossible, given an estimated infection efficiency

of ∼20%-30%, and that only 1/3 of the entire barcode library isolated from a given TA muscle

was sequenced. However, I can reconcile high numbers of unique barcodes if prior estimations for

MuSC numbers in muscle are incorrect. In fact, MuSCs on isolated myofibers may be fewer than

on myofibers in their native conditions, supporting these studies may have underestimated MuSC

numbers present on individual myofibers [33,80,104] .
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Figure 2.4: Comparison of unique barcode numbers and MuSC numbers in a TA
muscle. (A) Numbers of unique barcodes detected from the 2x DF1 control experiments and
the 22x mouse experiments. (B) Average number of MuSCs in a TA muscle quantified from
PAX7IRESCreERT2;R26RfloxTdTomato mice (n = 7). Each point represents an image take from a
single TA muscle.

To accurately quantify the number of MuSCs per TA muscle, I analyzed microscopy images

taken by Dr. Alicia Cutler of TA muscles in PAX7IRESCreERT2;R26RfloxTdTomato mice. These mice

express a nuclear localized fluorescent protein in all MuSCs expressing Pax7. Longitudinal cross
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sections were taken of TAmuscles with labeled MuSCs, allowing for quantification of MuSC numbers

on native myofibers. Extrapolating these results to determine number of MuSCs present in a single

TA muscle revealed that across 7 independent mice, an average of ∼100,000 MuSCs per TA muscle

was observed, suggesting MuSC numbers are greater than previous estimates (Figure 2.4B). With

these new data, the numbers of unique barcodes detected in our barcoding experiments become

much more reasonable, as they represent the expected ∼20%-30% of all MuSCs in a TA, rather

than ∼100%. The presence of a greater abundance of MuSCs in skeletal muscle than previously

appreciated not only lends credence to our results but also contributes to the understanding of the

MuSC populations and confers a potential for existence of large subpopulations.

2.3.4 Barcode bias and high frequency barcodes (HFBs)

From these analyses, I concluded that the numbers of unique barcodes sequenced from our

experiments were an accurate representation of both the viral infection efficiency and the number of

MuSCs in the TA muscle. Thus, I next sought to better understanding the total number of barcodes

sequenced from each mouse experiment. Among all unique barcodes, a small percentage (∼1%) were

detected at disproportionately large frequencies, which I termed high-frequency barcodes, or HFBs

(Figure 2.3A; 2.5A). The relative distributions of HFBs and low frequency barcodes (LFBs) suggest

that small subsets of MuSCs expand generating far greater numbers than an average MuSC in the

bulk population. Although subsets of MuSCs possess distinct proliferative behavior, their relative

distributions observed in our lineage tracking experiments support a strikingly disproportionate

balance among MuSC subpopulations.

I observed that some HFBs fall within ranges from tens, hundreds, or even thousands, while

others were detected with frequencies >100,000 in our dataset (Figure 2.3C; 2.5A). I considered it

a reasonable assumption that some HFBs are legitimate results of cell divisions, but given what’s

known about cell numbers in muscle and MuSC dynamics after an injury (see Section 2.3.8 “MuSC

population modeling”), I deemed HFBs on the higher end of this spectrum were most likely exper-

imental artifacts. Because identification of HFBs challenges the current understanding of MuSC
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population dynamics during regeneration, I needed to develop a method to better assess barcode

bias and identify biologically relevant HFBs (i.e. resulting from significant number MuSC and

progenitor divisions).

Unraveling barcode bias is confounded by several factors. First, while the barcode library was

constructed to possess a theoretical diversity of 1.6x107 possible sequence permutations, and thus

every unique barcode detected in our experiments would theoretically correspond to a single infected

MuSC, the true diversity of the library packaged into RCAS particles prior to infection into DF1

cells was never directly assessed. Moreover, library generation and sequencing fidelity is imperfect,

so sequenced barcodes may erroneously appear at high frequency due to their overrepresentation

in the library (such that they exist in higher numbers of viruses), bias in terms of sequencing, or

some other more subtle source of bias occurring within the mice.

Additionally, initial mouse experiments were conducted at different sequencing depths com-

pared to later experiments, such that the total numbers of barcodes sequenced varied significantly

across experiments (Figure 2.4A; Figure 2.5B-C). When sequencing is less deep, more of the total

barcodes detected in a given experiment will be comprised of the highest frequency barcodes. How-

ever, as sequencing depth increases, the overall frequency distributions shift, where HFBs comprise

a lower proportion of all barcodes as more LFBs would theoretically be detected. To ask which ex-

periments were conducted at theoretically sufficient depths where the distribution of HFBs, LFBs,

and the numbers of unique barcodes, is an accurate representation of the true distribution of MuSC

lineal sizes, barcodes were subsampled from each independent mouse experiment for a bootstrap-

ping analysis, and numbers of unique barcodes were assessed in each bootstrapped sample (Figure

2.5D). If an experiment was conducted at this theoretically sufficient depth, numbers of unique bar-

codes would not decrease as bootstrap size decreases (which in this case is analogous to sequencing

depth). However, if sequencing depth was insufficient, where greater depth would theoretically

result in more unique barcodes, as bootstrap subsample size decreases, numbers of unique barcodes

would decrease proportionally.

I observed through this analysis that, qualitatively, it appears few, if any, of the mouse
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sequenced from each DF1 or mouse experiment. (D) Results from bootstrapping analysis of barcode
sequencing depths.

experiments were conducted at demonstrably sufficient depth, as curves associated with these plots

are changing proportionally to changes in bootstrap sample size (Figure 2.5D). However, in our
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“DF1, rep2” experiment, we appear to have reached sufficient depth to capture most of the unique

barcodes, as the associated bootstrap curve does not change with decreasing bootstrap size (Figure

2.5D). Thus, statistically evaluating the proportions of HFBs in mice and identifying those that

are not the result of experimental variability and bias is hindered by these differences between

independent experiments and unknowns regarding the diversity of the input library.

Because I wanted to accurately quantify the relative contributions of MuSC lineages offering

insight into MuSC population dynamics, I needed to develop a computational method capable of

accounting for all potential sources of barcode bias after correcting for differences in experimental

depths. To accomplish this, I employed a multi-faceted approach where I integrated assumptions

regarding the diversity of the input library and a machine learning algorithm to assign likelihoods

of individual barcodes as being true or false positives. Through my analyses, I demonstrate that de-

spite clear and evident bias existing across these lineage tracing experiments, true positive HFBs are

detected across most mouse experiments, supporting that high and low expanding MuSC lineages

are bona fide features of muscle regeneration.

2.3.5 Bias removal using DF1 controls

In first addressing barcode bias, I considered control experiments that had been conducted

where viral library was used to infect DF1 chicken fibroblast cells and the barcodes integrated into

these cells were sequenced. Thus, the diversity of barcodes from these experiments are the closest

representation of the viral library diversity of which was injected into mice. Importantly, these

control DF1 experiments were conducted where 8-fold excess of viral concentrations were used to

infect DF1s prior to sequencing to ensure that all barcodes in the library would be represented.

Indeed, from my bootstrapping analysis, it is clear that the number of unique barcodes obtained

from the second of these two experiments was an accurate representation of the empirical number

of unique barcodes, where increasing sequencing depth would lead to only a negligible number of

additional unique barcodes detected (Figure 2.5D).

Moreover, the experimental strategy used when infecting DF1s and the sufficient depth is



25
A

B

DF1 R2

DF1 R1

D
en

si
ty

Reads in DF1
1e041e031e021e011

0

0.3

0.6

0.9

C Max reads from a mouse

D
en

si
ty

0

1

2

1e041e031e02

Number of mice barcode detected inN
um

be
r o

f b
ar

co
de

s

1e05

1e03

1e01

20151050

Figure 2.6: Distribution of barcode for frequencies associated with bias detected from
DF1 control experiments. (A) Frequency distribution of barcodes detected as biased in DF1
experiments. (B) After removing biased barcodes as determined from the DF1 experiments, fre-
quency distributions of barcodes in mice. (C) Distribution of the number of mice barcodes detected
as bias from DF1 experiments were detected in.

“DF1, rep2” which also enabled identification of barcodes overrepresented in the initial viral li-

brary. Because DF1 cells were infected with 8-fold library concentration (8x MOI), and cells were

harvested after 8 hours where no more than a single cell division could have taken place, these pa-

rameters confer all barcodes appearing >16x in the DF1s were overrepresented in the viral library.
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Supplementary Figure 2.1: Scatterplot matrix of barcode reads in mice and DF1 cells.
Each scatterplot shows barcodes detected in between 1 and 22 mouse experiments. Barcodes in the
upper left quadrant of each scatterplot represent barcodes that were detected in high frequency in
the mice but were not detected or detected at low frequency in the DF1 experiments.

Altogether, 8,601 barcodes were detected at frequencies >20 indicating overrepresentation in the

initial input library. In fact, between the two DF1 control experiments, multiple populations of

barcodes are overrepresented, detected at >1,000 in these experiments (Figure 2.6A).

These biased barcodes, appearing >20, were removed from downstream analyses. However,
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even after removing this clear bias, there were remaining barcodes detected at high frequency

in the mouse experiments (Figure 2.6B). Importantly, a subset of these barcodes were detected,

sometimes at high frequency, across several independent mouse experiments (Figure 2.6B-C). This

result was problematic for the following reason: if I assume that the overall distribution of barcodes

is an accurate depiction of MuSC populations, then the subset of MuSCs that proceed through a

large numbers of divisions relative to other MuSCs are inherently rare, and thus the same barcode

labeling a rare subset of MuSCs across multiple experiments is highly unlikely.

To further explore this, I plotted the frequency of barcodes detected across multiple mice

compared to barcode frequencies in the DF1 experiments, and observed a population of barcodes

detected across multiple mice at high frequency that were either not detected, or detected at low

frequency, in the DF1 experiments (Figure 2.1). Thus, using the DF1 experiments alone to identify

barcode bias is insufficient, as there are sources of bias that are unique to the mouse experiments

that requires more nuanced identification.

2.3.6 Hamming distance

Potential sources of barcode bias in mice that would not have been detected from the DF1

control experiments include barcode mutagenesis or the barcode sequence itself having unintended

effects on cellular functions. It is possible some HFBs are derivatives of several individual barcodes

that mutated and converged into a single sequence. Additionally, it’s possible that HFB sequences

confer some type of advantage in terms viral infection or increased capacity for cell divisions,

resulting in the erroneous occurrence of HFBs. If such scenarios were indeed occurring, they

could be revealed by higher sequence similarity among HFBs compared to LFBs. To evaluate this

possibility, hamming distances were calculated for different groups of barcodes (Figure 2.7). A

hamming distance is a distance measure between two strings, such that their similarity at each

individual position is quantified [105]. A hamming distance between two barcodes is calculated by:

Hd(b1, b2) =
∑

b1[i] ̸= b2[i]
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where b1 and b2 are two barcode sequences to compare. The hamming distance (Hd) is the sum

of individual positions (i) in each barcode sequence that are different. Thus, sequences with high

similarity have low hamming distances, while sequences with low similarity have high hamming
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distances.

I calculated hamming distances between the highest frequency HFBs appearing in between

1 and 22 mice. I uncovered that while the affect is moderate, the more mice a set of barcodes were

detected in, the more similar in sequence they were. Indeed, a set of HFBs appearing in greater

than 20 mice have lower hamming distances compared to the bulk population of HFBs within this

subset (Figure 2.7A).

I then calculated hamming distances for random subsamples of HFBs and LFBs and found

they were not significantly different between HFBs and LFBs, nor between HFBs in DF1s and from

mice (Figure 2.7B-C). Overall, these results suggest that barcode mutations or barcode sequence

bias, while potentially present to a small degree, are not a significant source of bias in these

experiments. From these results I concluded that there must be sources of bias that are unique

to mice, but are unrelated to and cannot be assessed by evaluating sequence-related features and

similarities among HFBs.

2.3.7 Using TF-IDF to identify true and false positive HFBs

To further address this issue of mouse-specific bias among HFBs required assignment of like-

lihood of a given HFB being a true or false positive given whether, and to what extent, it was

detected at high frequency in a large number of mice. To accomplish this, I implemented a sugges-

tion made by Zach Mass, a graduate student from Dr. Robin Dowell’s lab, to employ an algorithm

used developed for information theory known as term frequency inverse document frequency (TF-

IDF) [106]. This algorithm was initially developed within a machine learning framework to aid text

searching tools by assessing the proportionate power of a given word in distinguishing a document

within a series given the prevalence of that word across that series [106]. I applied TF-IDF to bar-

codes, where I took the product of the frequency of a barcode from a given mouse experiment (tf)

by the inverse log of the frequency of that barcode across detected across all mouse experiments

(idf):
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tfidf(fe, N) = tf(fe, n) ∗ idf(fE , N)

tf(fe, n) =
fe
n

idf(fE , N) = log10(
N

fE
)

In this formula, fe is the frequency of a barcode in a given experiment, fE is the frequency of a

barcode across all mouse experiments, n is the number of total number of barcodes from a given

experiment, and N is 22, the number of independent mouse experiments. This formula assigns a

value that represents how proportionate a given barcodes’ frequency is in a particular experiment

given how proportionate its frequency is across all other 21 mouse experiments. Thus, a barcode

appearing at low frequency (<5) in one or many individual experiments will receive a low TF-IDF

value, given that its frequency is more or less average compared to all other barcodes. Likewise,

barcodes appearing at high frequency across multiple mice are also given low TF-IDF values for

the same reason. In the former case however, given there is no reason to believe that barcodes

appearing at low frequency across all experiments are false, these can be trusted as true positive

LFBs. However, in the latter scenario, if a barcode has a low TF-IDF value because it is detected

at high frequency across many experiments, this barcode can be considered a false-positive. On the

other hand, if a barcode is detected at high frequency in a single or few independent experiments,

it will receive a high TF-IDF value because it is disproportionately at high frequency in a single

mouse experiment, and is thus likely a true positive barcode. Thus, applying TF-IDF in this way,

I assigned the likelihood of an HFB being a true positive and a result of in vivo cell expansion,

rather than an experimental artifact.

I applied this formula to each barcode in each individual mouse experiment and observed the

overall distribution of TF-IDF values. Similar to the frequency distribution of barcodes itself, most

barcodes have low frequency and low TF-IDF values, with a long right tail indicative of a minor

subpopulation of barcodes with high TF-IDF values (Figure 2.8A-B). I then plotted TF-IDF values

against a barcodes’ frequency in each individual mouse and observed that while most barcodes
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with low or high TF-IDF values are at low frequency, a subset have high TF-IDF values and were

detected at high frequency in at least one mouse experiment (Figure 2.8B). These HFBs with high

TF-IDF values are thus high confidence HFBs (hcHFBs), appearing at disproportionately high

frequency in a single or few mouse experiments, yet are detected at average frequencies, if at all,

in all other experiments.

I explored these hcHFBs further and found that 22/22 mouse experiments contained at least

a single hcHFBs appearing >5, 17/22 with barcodes detected >100, and 14/22 experiments with

barcodes >1,000 (Figure 2.8D). Thus, across 22 mouse experiments, we observed an abundance of

hcHFBs appearing at high frequency uniquely in a given experiment but not so across other mouse

experiments.

I next visualized the frequency distribution of hcHFBs (Figure 2.8E). While the median

frequency of hcHFBs was 1,530, a portion were detected at even greater frequencies out to ∼6,000

(Figure 2.8E). Altogether, these data suggest that despite bias driving some barcodes to appear to

erroneously high frequencies, there are a set of hcHFBs that are specific enough to individual mouse

experiments that the most likely explanation is that they are a product of MuSC proliferation into

disproportionately large lineages.

2.3.8 MuSC population modeling

A single myofiber in a mouse TA muscle is considered to contain roughly 300-400 myonuclei,

and I calculated as many as 200 MuSCs per TA (100k / 5,000 myofibers in single TA) [18,19,33,104].

The observed barcode frequencies among hcHFBs would thus imply that single MuSC clones are

generating numbers of progeny greater than total MuSC or myonuclear numbers associated with

single myofibers. Given its positioning between the basal lamina and myofiber membrane, it is not

believed that single MuSCs can contribute to populating myofibers other than the one it resides on.

Thus, either single MuSCs may actually contribute progeny to other myofibers, or total numbers of

cells during and post muscle regeneration are significantly greater than in uninjured muscle where

much of these cell numbers were observed [18,33,104].
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From data published from the Olwin lab, PAX7+ cells expand roughly 20-fold in the first 5

dpi [49]. While PAX7+ cells eventually decrease falling to within range of their initial levels, the fate

of the cells from this expansion (other than a lack of detectable PAX7) is not clear. Unless the cells

resulting from this expansion are physically removed from the tissue, cells containing a barcode will

still be detected through our sequencing experiments. However, whether these progeny of PAX7+

cells fuse and differentiate into myonuclei in the first 5 dpi, or persist as myogenic progenitors

only to fuse or give rise to additional Pax7+ cells a later time, cannot be determined from these

experiments. Thus, even after return of PAX7+ cells to basal levels by 14 dpi [49], it’s possible

that the progeny resulting from their expansion in the first 5 dpi, whether myonuclei or myogenic

progenitors, are far greater in regenerated muscle than uninjured muscle, explaining the presence

of HFBs.

To help reveal what cell type are represented by HFBs, additional EdU pulse-chase experi-

ments were conducted by a rotation student in the Olwin lab, Rachel Gessner. In prior published

data from our group, we have previously demonstrated that central myonuclear production is pre-

dominantly complete by 5 dpi, while MuSC self-renewal occurs after this time [49]. In Rachel’s

experiments (n = 1), mice were given EdU for 3 hours at 3 dpi and then EdU was withdrawn

and a chase was conducted out to 14 dpi, revealing that central myonuclei predominantly retained

their EdU label (Figure 2.9). However, from a similar pulse-chase conducted at 5 dpi, overall very

few nuclei are EdU+ (Figure 2.9). These data support that central myonuclei are derived from

only a few cell divisions, while MuSCs and peripheral nuclei have gone through sufficient divisions

between 3 dpi and 14 dpi to dilute their EdU label.

Additionally, Rachel conducted pulse experiments (with no chase) where EdU was adminis-

tered at 3 dpi or 5 dpi, and the tissue was harvested 3 hours after administration. These experiments

qualitatively demonstrate there are significantly more EdU+ cells from a 3 dpi pulse compared to

a 5 dpi pulse (Figure 2.9). Thus, a greater number of cell divisions are occurring at 3 dpi than

5 dpi, suggesting that after 5 dpi, overall numbers of dividing cells decrease. Altogether, I argue

that these experiments provide strong evidence that the bulk of all myogenic cell divisions occur
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Figure 2.9: EdU pulse-chase experiments during regeneration. EdU pulse (left) and EdU
pulse-chase (right) experiments done in mice at 3 dpi (top) or 5 dpi (bottom). EdU green, DAPI
blue, PAX7 red, laminin magenta.

from 0 dpi – 5 dpi. Some of these divisions result in centrally located myonuclei, some in myogenic

progenitors destined to differentiate into peripheral myonuclei at a later time, and some of these

divisions likely replenish MuSCs to maintain a sufficiently large pool once regeneration is complete.

Whereas divisions still occur after 5 dpi, they are less abundant and are most likely restricted to

specific lineages.

By integrating these EdU experiments with results from the barcoding experiments, I can

propose a model explaining how asymmetric and symmetric divisions may be balanced by MuSCs
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and myogenic progenitors during regeneration. To calculate the number of cells produced by any

number of symmetric divisions, one can use this equation:

N = Ni ∗ 2d

where a total number of cells N starting from an initial number of cells (Ni) is produced by a given

number of divisions d.

Alternatively, the same equation adjusted for a potential of asymmetric divisions, in which

one daughter cell, rather than dividing again to produce more cells, differentiates and ceases cell

divisions, can be captured by:

N = Ni ∗ (1 + r)2

In this adjusted formula, r is ratio of cells that can go on to produce more cells after a subsequent

division rather than differentiating. Thus, the r value is the proportion of divisions that are

symmetric or asymmetric. A lower r value therefore corresponds to a greater difference between

the number of cells produced via symmetric divisions compared to the same number of asymmetric

divisions. As r approaches 1, models of asymmetric and symmetric cell expansion converge.

By interpreting the EdU experiments to suggest that most cell divisions are complete by 5

dpi, the question arises as to what balance of asymmetric and symmetric divisions are required for

MuSCs to generate thousands of progeny in this time frame. Among hcHFBs, there are several

appearing at frequencies >2,000, with a few >4,000, and the highest frequency hcHFB reaching

6,532 (Figure 2.8E). To address whether a single MuSC can produce these numbers of progeny

in 5 dpi as is supported by the EdU pulse-chase experiments, I considered what is known about

the timing of MuSC divisions after an injury. Published studies have demonstrated that the first

MuSC division may occur as soon as 24 hours after an injury, and subsequent divisions may occur

as rapidly as every 8 hours after that. These temporal constraints would enable between 10 and

13 divisions to occur within the first 5 dpi (Supplental Figure 2.2).
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Supplementary Figure 2.2: Table describing potential numbers of myogenic progenitor cell divisions
occurring in by 5 dpi given temporal constraints.

To address what balance of symmetric or asymmetric divisions are necessary to produce

thousands of progeny within 10-13 divisions, I plotted the functions for symmetric and asymmetric

expansion with different r values out to 13 divisions (Figure 2.10A). From this analysis of potential

different cell expansion dynamics, I find it is indeed possible for a single MuSC to produce up to

8,000 progeny in 5 days, as long as the majority of divisions are symmetric. Moreover, these data

suggest it’s possible that with predominantly symmetric divisions occurring, even higher numbers

of cells can be produced in this time frame.

Given the immense numbers of cells that can be generated through symmetric expansion

even within these temporal constraints, it’s possible that asymmetric divisions are incorporated in

order to reduce overall cell expansion. Or alternatively, it’s possible that this period of rapid cell

expansion results in a transiently excessive number of cells whereby some are eventually pruned

out to reestablish population balance after regeneration is complete. To evaluate these different

possibilities, I compared the frequency distributions of hcHFBs in 30 dpi and 90 dpi samples. From

looking at these distributions, the numbers of exorbitantly high frequency HFBs (hcHFBs>4,000)

are greater at 30 dpi than 90 dpi, while there are increased numbers of more average frequency
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hcHFBs (hcHFBs>100 & <4,000) at 90 dpi than at 30 dpi (Figure 2.10B). Altogether, these data

suggest that progeny from high expanding lineages proceed through a reduction process between

30 dpi to 90 dpi.
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2.3.9 MuSCs population dynamics are different in aged mice

Adult stem cell populations become depleted as organisms age [88], yet whether all popu-

lations and functions of MuSCs are affected equally during aging, or whether distinct subsets are

preferentially affected is not well understood. Having proposed a model of MuSC expansion after

an injury in the previous section, I next wondered how this proposed paradigm may differ in aged

mice compared to young mice. HFBs may represent an undesired side effect of regeneration and

is a result of some uncontrolled and pathological cell proliferation. This could result in a higher

proportion of HFBs detected in aged mice after regeneration, supporting that generation of HFBs

is not associated with regeneration in young mice. Alternatively, as proposed by my model, HFBs

result from a legitimate biological mechanism needed to ensure appropriate balance of different

fate choices and population sizes during and after regeneration. In this latter scenario, less HFBs

would be observed in aged mice compared to young mice, indicating improper population balance

and depletion of specific MuSC subpopulations that could contribute to regenerative defects during

aged mouse regeneration.
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Figure 2.11: Population dynamics are different in aged compared to young mice after
regeneration. Frequency distribution of HFBs>5 & TF-IDF>0.7 demonstrating an increased
density of HFBs in young mice.

When visualizing the frequency distribution of hcHFBs>100 in young and aged mice from
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only 30 dpi experiments, I observed more hcHFBs detected in regenerated muscle from young mice

compared to aged mice (Figure 2.11). These data support that the capacity for small subsets of

MuSCs to generate the disproportionately extensive numbers of progeny is required for appropriate

muscle regeneration, and their reduction in aged mice may be a signature of dysregulated myogenic

population dynamics accompanying skeletal muscle aging.

2.4 Discussion

My research work described in this chapter contains novel analysis of barcode lineage tracing

of MuSCs, the critical myogenic cell type enabling skeletal muscle regeneration [30–32]. Integrat-

ing these results with results from EdU labeling and pulse-chase experiments builds on findings

from previous studies [8, 52, 54, 62, 70, 107] and improves our understanding of how MuSC fates

are regulated to produce sufficient numbers of differentiated myonuclei, while simultaneously not

depleting the MuSC pool. Moreover, my results support that population dynamics are disrupted in

MuSCs from aged mice during regeneration, suggesting a failure in aged mice to maintain proper

population balance among MuSCs.

2.4.1 A small MuSC subpopulation proceeds through disproportionate numbers

of cell divisions

After a skeletal muscle injury, MuSCs are the precursors for all myogenic cell types created

during regeneration [30–32]. MuSCs balance proliferation rates sufficient to rapidly generate large

numbers of myonuclei, while also ensuring that quiescent MuSCs are not depleted by either resisting

activation, or through activation and procession through self-renewal divisions [37, 49, 50, 61, 108].

While MuSC progeny can become myonuclei or self-renewed MuSCs, it is not clear whether distinct

MuSC subsets are biased towards particular fates.

In order to balance self-renewal and differentiation, adult stem cells regulate their numbers

and proliferation rates to ensure appropriate abundances of stem cells and differentiated progeny.

These strategies are broadly delineated as one of two models. The first is referred to as invariant



40

asymmetry, a paradigm in which there is an equipotency of all stem cells to asymmetrically di-

vide, resulting in a self-renewed stem cell and a cell fated to differentiate (Figure 1.2 ) [53, 108].

The alternative to this model is population asymmetry, where different stem cells have different

propensities for either these asymmetric divisions, or symmetric divisions creating two stem cells, or

two differentiated progeny 1.3. Thus, in this latter scenario, the balance between self-renewal and

differentiation is maintained at the population level, where stem cell fates are heterogeneous and

segregate to specific subpopulations, rather than all stem cells dividing asymmetrically [53,108,109].

Nevertheless, sufficient evidence now exists to support that stem cell population paradigms may be

more tunable and complex than described these models would imply [56–58,110].

Because MuSCs are capable of proceeding through both asymmetric self-renewal divisions as

well as symmetrically expanding as myogenic progenitors [39,47,52,61,108], MuSC dynamics most

closely resemble a model of population asymmetry. However, how different types of divisions are

regulated at a population level, and whether distinct subsets of MuSCs are biased for generating

MuSC or myonuclear lineages and where asymmetric and symmetric divisions segregate to different

MuSC subpopulations, is not clear. While asymmetric divisions may be critical for maintaining the

MuSC pool during homeostasis, symmetric divisions during muscle regeneration may be important

for producing sufficient numbers of MuSCs or differentiated myonuclei [39,48,61,108,109]. This is

supported by progressive injuries resulting in reduced clonal complexity, indicating the MuSC pool

is maintained by symmetric divisions over time, resulting in neutral clonal drift [52].

We labeled individual MuSCs with inheritable genomic barcodes, determining the proportions

of progeny generated by individual MuSCs and their subsequent lineages. My analysis of barcode

frequency distributions and the integration of these data with EdU pulse-chase experiments revealed

that significant MuSC proliferation appears restricted to rare lineages biased for production of

MuSCs. While, strikingly, the bulk of MuSCs proceed through a small number of divisions that

primarily generate centrally located myonuclei.

My proposed model of MuSC population dynamics during muscle regeneration describes cen-

trally located myonuclei as most likely derived from the most abundant subpopulation of MuSCs
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(MuSCs-A, representing LFBs) (Figure 2.12). Because LFBs represent MuSCs having only pro-

?

0-5dpi

5-14dpi

14-90dpi

XX

X

Figure 2.12: Proposed model of MuSC dynamics after muscle injury. There are 3x pop-
ulations of MuSCs; MuSCs-A (purple), MuSCs-B (yellow), MuSCs-C (blue). In the first 5 days
following an injury, MuSCs-A and MuSCs-B are activated (top). MuSCs-A divide relatively few
times and represent LFBs. Their progeny predominantly differentiate into centrally located my-
onuclei. MuSCs-B become activated in the same time as MuSCs-A, but they begin dividing and
producing more MuSCs or a different class of progenitor. MuSCs-B represent HFBs, and their lin-
eage fate can either be MuSCs, myogenic progenitors, or peripheral myonuclei. Some cells within
the MuSCs-B class are pruned out between 14 dpi – 90 dpi (bottom). MuSCs-C also represents
LFBs, but these cells may be reserve MuSCs that are only activated after regeneration is complete
to reestablish clonal diversity among the MuSC pool.
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ceeded through a few cell divisions, these lineages, and the myonuclei derived from them, are likely

clonally diverse. These cells, may exist prior to injury in a type of primed state towards produc-

tion of myonuclei through minimal cell divisions, potentially related to to how levels of Pax3 and

Pax7 expression confer distinct proliferative and differentiation capacities and the identification

of a MuSC “alert“ state [9, 66, 111–113] . Whether MuSCs-A divide only asymmetrically, only

symmetrically, or a combination of both, cannot be determined from the barcoding and EdU ex-

periments alone. Nevertheless, if symmetric divisions occur, my data support they are minimal

given the majority of barcodes were detected at low frequency, and thus is not characteristic of the

large number of progeny generated through symmetric cell expansion.

In addition to MuSCs-A, my findings support that a large portion of the replenished MuSC

pool, and potentially peripheral myonuclei as well, are generated by another subpopulation of

MuSCs dividing at high rate and resulting in HFBs (MuSCs-B, Figure 2.11). While asymmetric

divisions occurring within this population cannot be ruled out, my model suggests they are more

rare given the time frame in which the EdU data supports it takes for these cells to expand to

significant numbers. A reduction in HFBs from 90 dpi to 30 dpi supports the initial process of

MuSC expansion results in an overabundant number of cells, whereby some are then pruned to

restore population balance once regeneration is complete. Crucially, the reduction of HFBs from 30

dpi to 90 dpi cannot be simply the result of differentiation (as the barcode would still be detected if

the cell is still present in the tissue) but rather can only result from physical removal of a given cell

containing an HFB from the muscle. It’s possible that among the progeny of MuSCs-B containing

HFBs, some eventually differentiate generate peripheral myonuclei, or they persist as quiescent

MuSCs or as primed progenitors (Figure 2.11). Overall, these pose intriguing questions remaining

still to be answered, and evaluating the biological significance of high expanding MuSCs will be

critical for understanding population dynamics during and after regeneration in young and aged

mice.

I have described two populations of MuSCs (MuSCs-A and MuSCs-B), where each have

distinct roles during regeneration and distinct proliferative behaviors to result in the presence of
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either LFBs or HFBs. However, this conceptual model as described so far would lead to a complete

abatement of MuSC clonal diversity after a single injury, as all quiescent MuSCs remaining after

regeneration would be derived from a single expanding lineage (MuSCs-B). Thus, there is likely a

third population of MuSCs (MuSCs-C), which may represent a type true “reserve” MuSC, similar

to observed in muscle and other tissues (Figure 2.11) [37, 54, 114]. These cells would theoretically

only activate under extreme circumstances such as a significant injury, and may be important for

maintaining MuSC clonal diversity [37, 54, 115, 116]. MuSCs-C would be indistinguishable from

MuSCs-A and other LFBs from our barcoding experiment. However, their role would be distinct

and could be the parent cell for both MuSCs-A and MuSCs-B lineages (Figure 2.11).

While this model successfully explains a potential scenario leading to the results obtained

from our barcoding experiments, there is admittedly not much explanation for the presence of HFBs

reaching frequencies as high as 4,000-6,000. If HFBs do represent predominantly symmetrically

expanding MuSC self-renewing lineages, the lineages reaching these sizes would mean that single

MuSC clones generate 4-6% of all MuSCs after regeneration. If some of these MuSCs differentiate

as peripheral nuclei as explained in my model, this may reduce this percentage some. It is possible

that these high expanding lineages are themselves the “reserve” MuSCs responsible for repopulating

the MuSC pool, but this seems problematic as this would greatly reduce clonal diversity after a

single injury rather than only through successive injuries [52]. A possibility I cannot rule out is

that the large MuSC lineage expansions observed from our experiments are pathological, analogous

to cancerous growths resulting from uncontrolled cell proliferation. Given the number of MuSCs

in the muscle and the severity of chemically induced injuries, it’s possible that a small percentage

of these cells become dysregulated and expand erroneously. Nevertheless, my proposed model

provides a conceptual framework describing the presence of HFBs and the overall observed barcode

distributions consistent with experimental data from other groups [29,37,39,52,62,108]. Evaluating

the biological significance of HFBs will require hard work from future researchers from our group

to further our understanding of MuSC population dynamics.



44

2.4.2 MuSC population dynamics in aged mice

Skeletal muscle aging is a significant contributor to declining standard of living in elderly

individuals. Contributing to this decline are widespread deficits in MuSC function that include

altered capacities for self-renewal, proliferation, or differentiation, as well as an overall reduction in

numbers [7–10,74,86,89]. However, whether MuSC population dynamics during regeneration differ

in aged skeletal muscle is critical to revealing the underlying drivers of muscles reduced regenerative

capacity.

Through analysis of our barcode lineage tracing experiment, I reveal that the population

balance between HFBs and LFBs observed during young-mouse regeneration is distinct from the

balance observed during aged-mouse regeneration. My results support that in aged mice, the

presence of high expanding lineages, which may be important for repopulating the MuSC pool,

is disrupted. If MuSCs indeed proceed through a predominantly symmetric expansion in order

to generate sufficient numbers of self-renewed MuSCs, and this process is awry in aging, it could

explain the reductions in MuSC number and clonal diversity among aged mouse MuSCs [52,58,104].

Overall, these findings suggest population and proliferative dynamics driving MuSC expansion and

maintenance of quiescent MuSCs is disrupted during aging.

2.5 Methods

This method section provides a brief description of a work in progress. The precise method-

ologies utilized in this project are subject to change, so the reader is encouraged to refer to the

published paper once it is available for a more in depth description of all PCR primer sequences,

the barcoding strategy, and all subsequent analyses. The methods provided below were written to

be sufficient for the comprehension and interpretation of this thesis.
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2.5.1 Mouse genetics and injuries

Mice containing the gene for the TVA receptor were gifted from collaborators outside of the

University of Colorado Boulder. In short, the gifted CreTV A+
mice were bred in-house to generate

the Pax7+/Cre+/TV A+
mice used in this experiment. Upon the addition of Tamoxifen, cre-mediated

recombination enables Pax7 -driven expression of the TVA gene. Aged mice were between 22-26

months, young mice were between 4-8 months.

2.5.2 DNA barcode library construction

The barcode library was constructed by annealing oligonucleotides containing randomized

sequences interspersed with fixed sequences (—–ATC–GAT–AAA–GGT–) flanked by attb1 and

attb2 sequences for gateway cloning into E. coli. This library was then shotgun cloned into an

RCAS adaptor plasmid containing an IRES mCherry expression casette. Barcode viruses are

produced by transfecting avian DF1 fibroblasts with the viral library, expanding cells, harvesting

virus, and purifying by ultracentrifugation yielding ∼1x108 ifu/ml of RCAS-BC-mCherry virus.

2.5.3 DF1 experiments

Naive DF1 cells were infected with RCAS viral preparations containing the barcode library

at 8-fold representation of library’s diversity. DNA was isolated from cells 8 hours after infection

using a Qiagen DNAeasy kit, where the protocol was followed according to manufacturers recom-

mendations. Purified DNA was then assessed by gel electrophoresis for size and quality before

being subjected to LAM-PCR and prepared for sequencing.

2.5.4 Mouse injuries and DNA isolation

Mice were administered Tamoxifen to induce TVA expression in MuSCs 6 hours prior to

injuries. For injuries, mice were injected with 1.2% BaCl2 concomitant with injection with RCAS

containing barcode libraries. After 30dpi or 90dpi, genomic DNA was isolated from mouse TA

muscle using a Qiagen DNAeasy kit, where the protocol was followed according to manufacturers
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recommendations. Purified DNA was then assessed by gel electrophoresis for size and quality before

being subjected to LAM-PCR and prepared for sequencing.

2.5.5 LAM-PCR

The sequence for the LAM-PCR primer is 5′- GTGACTGGAGTTCAGACGCTCANNNN

NNNNCCGCTTTTCGCCTAAACAC where text in red is the degenerate UMI sequence added

to each individual barcode, and the text in green represents the portion annealing to the barcode

sequence. A single round of LAM-PCR is conducted to generate a sequence to be amplified that has

sequencing adapters, degenerate barcode sequence, and a UMI. Universal PCR is then conducted

on LAM-PCR products to bulk amplify the library for sequencing.

2.5.6 Sequence processing

Fastq files were assessed for quality using FastQC. Reads containing barcode sequences were

aligned and scored for their identity to the consensus region of the barcode using the python package

pairwise2 and the function “align.globalms”. The alignment sequence used was “—–ATC–GAT–

AAA–GGT–ACCCAGCTTTCTTGTACAAAGTGGTTGATCGATGCGATGTACGGGCCAGA

TATACGCGTATCTGAGGGGACTAGGGTGTGTTTAGGCGAAAAGCGG——–TGAGCGT

CTGAACTCCAGTCAC” for each Fastq read. Only sequencing reads with perfect matches to the

consensus bases were included for downstream for analyses.

2.5.7 Frequency analysis and further analyses

All barcode analyses was conducted primarily using base packages in R 4.0.1, as well as the

tidyr and dplyr packages for data frame handling. Barcode frequency tables were generated with

barcodes and their frequencies merged across individual experiments. Detection of over-represented

barcodes from the DF1 experiments, calculation of Hamming distances, and application of the TF-

IDF algorithim, were all done ad hoc. All code associated with library bias evaluation and frequency

distribution analysis will be made publicly available upon time of publication.



Chapter 3

Aging disrupts gene expression timing during muscle regeneration

3.1 Chapter Note

The following chapter of this thesis is published work of which I was first author [117]. All

supplemental tables can be accessed online. The text comprising this chapter is unchanged apart

from those made for organizational purposes. The experiments that generated the data I ultimately

processed and analyzed for this study was conducted by Ashleigh Van Deuesen, a talented former

undergraduate in the lab, and Dr. Alicia Cutler, a post-doctorate researcher. The EdU experiments

were conducted by Dr. Brad Pawlikowski.

Additionally, the publication of this work would have not been possible if not for the signif-

icant intellectual and computational guidance provided by Dr. Jacob Stanley, a post-doctoratal

fellow in the Dr. Robin Dowell’s lab. Dr. Stanley’s computational expertise, as well as from others

from the the lab of Dr. Robin Dowell, was indispensable for the completion and publication of this

work.

3.2 Abstract

Skeletal muscle function and regenerative capacity decline during aging, yet factors driving

these changes are incompletely understood. Muscle regeneration requires temporally coordinated

transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers,

and to mature myonuclei, restoring muscle function after injury. We assessed global changes in

myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice
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by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei.

Aging-specific differences in coordinating myogenic transcription programs necessary for restoring

muscle function occur following muscle injury, likely contributing to compromised regeneration in

aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged to young

mice via Dynamic Time-Warping revealed pseudotemporal differences becoming progressively more

severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may

contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms

age.

3.3 Introduction

Skeletal muscle is critical for overall health. Deteriorating skeletal muscle function and re-

duced regeneration occurring during aging negatively impacts mobility and muscle force, contribut-

ing to physical and mental decline in elderly individuals [4–6,70,118]. Skeletal muscle is comprised of

long syncytial cells (myofibers) formed by fusion of skeletal muscle progenitors during development

and during muscle repair and whose nuclei share a common cytoplasm yet are transcriptionally

heterogeneous [16,20–22,26].

Myofibers are maintained in adult skeletal muscle by a population of quiescent muscle stem

cells (MuSCs) that in response to injury, activate, proliferate as mononuclear myogenic progenitors,

and then fuse, generating sufficient myonuclear numbers and diversity to repopulate regenerated

myofibers [30,31,119]. While most progenitors differentiate and fuse producing myonuclei, a subset

undergoes self-renewal, reacquiring quiescence and replenishing the MuSC pool [47,49–51]. Though

the transcriptional changes driving MuSC activation and proliferation are well-studied, the mecha-

nisms responsible for maturing and diversifying myonuclei once progenitors have fused are largely

unexplored.

Failure to maintain and repair skeletal muscle in aged organisms is attributed in part to

deficits in MuSC function that include delays in exiting quiescence, premature differentiation, failure

to transplant, and cumulative transcriptional changes [7–10,16,21,74,85,86]. Temporal expression of
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myogenic transcription factors (TFs) is disrupted in progenitors isolated from aged mice [74,85,86],

eliciting potentially widespread and severe downstream affects in their gene regulatory networks.

Aging-associated defects in MuSC transcriptional dynamics are exacerbated upon differentiation

[85,86] supporting the idea that disruptions in gene expression timing during regeneration worsen as

regeneration proceeds. Yet to what extent these temporal differences drive deficiencies in skeletal

muscle repair and function in aged organisms is largely unexplored and cannot be sufficiently

recapitulated in culture, as myonuclei fail to organize into the specialized structures found in vivo

and never express mature isoforms of skeletal muscle proteins [42,120,121].

Evaluating transcriptional changes driving myogenesis in vivo is complicated by the multi-

nucleated and heterogeneous nature of skeletal muscle cells. Single-cell RNA sequencing provides

sufficient resolution of mononuclear progenitors but fails to capture substantial myonuclear num-

bers [122,123]. RNA-FISH provides spatial and transcriptional information but is low-throughput,

while spatial transcriptomics lacks the resolution to examine individual myonuclei [16, 124]. Nu-

merous studies have identified individual genes and pathways through direct experimentation that

are disrupted in aged-mouse skeletal muscle, but aging impacts universal properties of transcrip-

tion [69], thus large-scale transcriptomic interrogations in vivo followed by in-depth computational

analyses are uniquely situated to further improve our understanding of skeletal muscle aging.

To better understand how the transcriptional changes occurring during muscle regeneration

in young-adult and aged mice differ, we constructed a pseudotime trajectory of myogenic differ-

entiation from single-nucleus RNA sequencing (snRNA-seq) of myogenic nuclei isolated from both

mononuclear and multinucleated cells prior to and during regeneration in young-adult and aged

mice. Ordering nuclei along pseudotime enabled parsing heterogeneous differentiation states present

among myogenic nuclei taken at discrete times during regeneration, such that nuclei from young-

adult and aged mice could be aligned and compared based on their relative cell fate status. Com-

paring how the pseudotime ordering of nuclei differs between young-adult or aged mice revealed

that genes with aging-associated alterations in pseudotemporal expression are part of myogenic

transcriptional programs that are essential for the re-acquisition of muscle function after an injury.
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Further analysis of the differences between myogenic nuclei from aged compared to young-adult

mice using Dynamic-Time Warping revealed that global transcriptomic differences are larger in

post-fusion myogenic nuclei compared to mononuclear progenitors. Collectively, alterations in gene

expression timing may amplify as progenitors differentiate into myonuclei and may thus contribute

to reduced muscle regeneration and declines in muscle function as mice age.

3.4 Results

3.4.1 MuSC expansion dynamics are disrupted during regeneration of aged mouse

TA muscle

MuSCs from aged mice are less proliferative and differentiate prematurely when cultured

compared to MuSCs from young mice [8,74,80]. To identify differences in MuSC behavior in aged

mice in vivo, we quantified MuSC number, identified by PAX7 immunoreactivity, in the tibialis

anterior (TA) muscle for up to 28 days post-injury (dpi) in aged and young mice. MuSCs exit

quiescence and their myogenic progenitor progeny expand rapidly, reaching a peak by 4 dpi in

young mouse muscle, and slowly decline to within 2-fold of initial MuSC numbers by 28 dpi (Figure

3.1A). In aged mice, PAX7+ cell expansion is delayed with myoblast numbers peaking at 7 dpi

with less than half the peak number in young mice (Figure 3.1A). Nevertheless, at 7 dpi numbers

of MuSCs and myoblasts in young and aged mice begin to decline synchronously, such that by

completion of regeneration similar numbers of MuSCs are present in both age groups (Figure

3.1A).

Reduced MuSC numbers in aged mice may result from reduced MuSC proliferation, a slower

cell cycle, cell death, or from some other cause. To evaluate these possibilities, we used the nu-

cleotide analog ethynul-2’-deoxyuridine (EdU), which is incorporated into DNA during replication,

to identify recently divided PAX7+ cells. Young and aged mice were injured and treated with

EdU for 6 hours prior to tissue harvest and percentage of EdU+/ PAX7+ cells was quantified at

different timepoints (Figure 3.1B). The percentage of EdU+/PAX7+ cells was reduced in aged
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mice compared to young mice at all timepoints up to 14 dpi, indicating fewer dividing MuSCs

and myogenic progenitors (Figure 3.1B). Although the proportion of dividing PAX7+ cells was

diminished in aged mice, the overall proliferative trend is similar in both aged and young mice, as

the percentage of EdU+/PAX7+ cells peak at 4 dpi and then decrease (Figure 3.1B).

3.4.2 snRNA-seq of post-injury skeletal muscle in young and aged mice

Temporal differences in the expansion of MuSCs and their progeny between young and aged

mice at 4 dpi or 7 dpi suggests temporal coordination of myogenic transcriptional networks driving

regeneration may be altered. Probing gene expression changes prior to, during, and following cell

fusion is challenging, requiring assessment of transcripts from mononuclear cells as well as myonuclei

in syncytial myofibers, rendering use of standard single-cell sequencing ineffective. To evaluate

aging-associated transcriptomic differences in myogenic nuclei during muscle regeneration in aged

mice, we conducted snRNA-seq on the TA muscles of young and aged mice at 0 dpi (uninjured),

at 4 dpi when myonuclear production is largely complete [49], and at 7 dpi when myonuclei are

likely maturing (Figure 3.1C; Figure 3.1A-B). Dimensional reduction was conducted on single-

nuclear transcriptomes aggregated across all timepoints and combined from both young and aged

mice (Figure 3.1A-B). Nuclear clustering revealed the expected cell types including skeletal muscle-

associated mononuclear cells (immune cells, FAPs, endothelial cells, etc.), myogenic mononuclear

cells (MuSCs and myogenic progenitors), as well as myonuclei within multinucleated myofibers

(Figure 3.1C-D; Figure 3.1C).

We subclustered all MuSCs, myogenic progenitors, and myonuclei based on 4 criteria: 1)

inclusion in Ttn+/Neb+ clusters, 2) expression of the myogenic genes Pax7, Myod1, Myog, Ckm,

or Mylk2, 3) lack of expression of Cd74 or Pecam1, and 4) exclusion from the fibroblast, schwann

cell, smooth muscle cell, and immune cell clusters (Figure 3.1C) [20, 125–128]. MuSCs, myogenic

progenitors, and myonuclei (Figure 3.1E) arrange in unique as well as overlapping clusters when

plotted by age (Figure 3.1F) or injury timepoint (Figure 3.1G). This comprehensive myogenic sub-

set, comprised of myogenic nuclei from all injury timepoints and young as well as aged-mouse skele-
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Figure 3.1: MuSC kinetics and sequencing in regenerating muscle of young and aged
mice. (A) PAX7+ cell quantification from regenerating TA muscles in young and aged mice
(n = 3). (B) Percent PAX7+ and EdU+ cells in regenerating young and aged mice. EdU was
administered 6 h prior to tissue harvest. *indicates p < 0.05, 1-way ANOVA (n = 3). (C) UMAP
clustering of nuclei from sequencing single cells and single nuclei of skeletal muscle from young and
aged mouse TA muscles at 0 dpi (n = 4; 2 young, 2 aged), 4 dpi (n = 5; 2 young, 3 aged), and 7
dpi (n = 4; 2 young, 2 aged). Black circle demarks myogenic nuclei used for further analysis. (D)
Violin plots of selected genes used to identify cell types from snRNA-seq. (E) Subset of myogenic
nuclei used for downstream analyses (F) identified by age, and (G) by dpi. See also Figure 2.1 and
Table S1-S2.

Supplementary Figure 3.1: Single-nucleus sequencing of TA muscle in young and aged
mice 0 dpi, 4 dpi, and 7 dpi. (A) UMAP clustering of all nuclei identifying those from young
mice (blue) and aged mice (orange), and (B) combined nuclei from young and aged mice identifying
the contribution from 0 dpi (salmon), 4 dpi (green) and 7 dpi (blue). Black circles represent
myogenic population used for additional analysis and described in Figure 3.1C-G. (C) UMAP plots
depicting the expression of representative genes for evaluating distinct cell types and representative
genes used to identify myogenic sublcusters (Pax7 = MuSCs, Myod1/Myog = myogenic progenitors
Ttn/Neb = myonuclei, Myh1 = Type IIa myonuclei, Myh2 = Type-IIx myonuclei, Myh4 = Type-
IIb myonuclei, Myh3/Myh8 = regenerating myonuclei, Pdgfra/Dcn = FAPs, Pecam1 = endothelial,
Cacna1c = smooth muscle, Stat4/Cd74 = immune). Axis scales are the same as in Figure 3.1C.
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tal muscle, was used for further analyses. Comparing GO Processes for myogenic nuclei between

young and aged mice at 4 dpi and 7 dpi identified filament assembly and myoblast proliferation as

significant at 4 dpi (Figure 3.2A; Table S1), and MuSC differentiation and innervation as signif-

icant at 7 dpi (Figure 3.2B; Table S1) [129]. Among the most significantly affected genes within

these GO processes are genes encoding receptors Fgfr1, Fgfr4, and Notch3 (Figure 3.2C), genes

encoding sarcomeric proteins Ttn and Neb (Figure 3.2D), and transcription factors (TFs) involved

in myoblast proliferation, Six1 and Runx1 (Figure 3.2E; Table S2) [35, 126, 130–132]. Although

the majority of myonuclei are generated by 4 dpi and the majority of MuSCs self-renew between 5

dpi and 7 dpi [49], we observed expression of genes characterizing myogenic progenitors including

Pax7, Myod1, and Myog in nuclei from 7 dpi mice (Figure 3.2F). Thus, among nuclei obtained at 4

dpi and 7 dpi there is a diversity of myogenic states present, suggesting heterogeneity in the timing

of MuSC activation, proliferation, and differentiation following an induced injury (Figure 3.2G).

3.4.3 Pseudotime trajectory of myogenic nuclei during muscle regeneration

MuSC activation, proliferation, and differentiation appear asynchronous, and therefore cor-

relating nuclear transcriptomes with progression through these cell states using a given injury

timepoint is impossible (Figure 3.2G). Thus, we applied Moncole3, a tool for inferring pseudotime

trajectories from single-cell sequencing experiments, to better understand how aging-specific tran-

scriptional alterations in MuSCs and their progeny affect myonuclear transcription [133,134]. The

Monocle3-inferred UMAP projection contains two major lobes separated by a hinge region and a

continuous branched trajectory representing an average path of pseudotime (Figure 3.2A). Nuclei

comprising the initiation of pseudotime are situated in the bottom of the left lobe and express

high levels of Pax7 (Figure 3.2B) among other genes (Figure 3.3A-D) identifying quiescent and

activated MuSCs [135]. Nuclei in the hinge region bridging the left and right lobes are enriched

for Mymk expression, a gene required for fusion of mononuclear progenitors (Figure 3.2C) [136].

Mature myosin isoforms encoded by Myh4, and other genes expressed in mature muscle are present

in the larger right lobe occupying the end of the pseudotime trajectory (Figure 3.2D; Figure 3.3E-
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asynchronous timing of MuSC activation, proliferation, and differentiation during the first 8 days of
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G) [20, 42, 126]. Thus, the pseudotime trajectory comprises a comprehensive span of myogenic

differentiation beginning with quiescent MuSCs, continuing through progenitor fusion, and ending

with myonuclear maturation.

Nuclei from young and aged mice were both included when generating the pseudotime tra-

jectory (Figure 3.2E). Qualitatively, distributions of nuclei from young and aged mice are similar

throughout the trajectory, implying the broad transcriptional processes driving myogenic differen-

tiation during skeletal muscle regeneration are largely conserved in aged mice (Figure 3.2E). Nuclei

from young mice (Figure 3.2F) and from aged mice (Figure 3.2G) comprising the pseudotime tra-

jectory are derived from uninjured (0 dpi), 4 dpi, and 7 dpi TA muscle (Figure 3.2H). Nuclei

from 0 dpi TA muscles occupy the beginning and end of pseudotime, thus relating the transcrip-

tional changes between the initial and final transcriptional states of MuSCs and mature myonuclei,

respectively (Figure 3.2I). Indeed, nuclei from 4 dpi mice (Figure 3.2J) and 7 dpi mice (Figure

3.2K) distribute throughout the pseudotime trajectory, bridging populations of quiescent MuSCs

to mature myonuclei along a continuous path of myogenic differentiation (Figure 3.2A).

Heterogeneity of 4 dpi and 7 dpi samples is evident from the dispersion of these nuclei across

the trajectory, further reinforcing a diversity of myogenic states among nuclei at these timepoints

(Figure 3.2G). While the majority of myonuclei are generated within the first 5 dpi, after 5 dpi

myonuclear production is reduced [49] and myonuclei are likely undergoing maturation. We iden-

tified two distinct groups of 7 dpi myogenic nuclei clustered on either side of the trajectory’s hinge

region that represents progenitor fusion (Figure 3.2H, K). Expression of Egfr, Mest, Itm2a, Mgp,

and Ncoa7, genes associated with MuSC self-renewal, are enriched in transcriptomes of pre-fusion

7 dpi nuclei from the left lobe when compared to post-fusion 7 dpi nuclei in the right lobe (Fig-

ure 3.3H-K; Table S3) [49, 104]. Whereas in the right lobe, myonuclei are enriched for Myh3 and

Myh8 expression, two myosin isoforms expressed in immature myonuclei during regeneration (Table

S3) [40]. Thus, nuclei in the right lobe collected from 7 dpi TA muscles are most likely maturing

nascent myonuclei, and the hinge region in the pseudotime trajectory represents commitment of

MuSCs to either self-renew or terminally differentiate (Figure 3.2H).
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3.4.4 MuSCs and progenitors have altered gene expression dynamics in aged mice

Dramatic differences in transcriptional states between MuSCs and mature myonuclei may

obscure subtle aging-associated differences existing within each population independently. Thus,

we partitioned the trajectory into two major branches; Branch 1 (B1), beginning with MuSC

nuclei and ending on the distal tip of the hinge region, and Branch 2 (B2), initiating from the hinge

region and extending to the end of the myogenic trajectory (Figure 3.4A-E). Nuclei in the hinge

region were initially included in both subsets to better anchor each, such that when conducting

dimensional reduction, a representative trajectory is inferred for both B1 and B2 (Figure 3.4D-E).

An additional subset was generated from B2 nuclei to exclude nuclei in and just after the hinge

region, as determined by the point of decreasing Myh3 and Myh8 expression and increasing Myh1

and Myh4 expression (Figure 3.2D; Figure 3.3E; Figure 3.4F-H). Thus, B1 represents MuSC and

myogenic progenitor dynamics through the point of cell fusion, and the B2 myonuclear subset

represents post-fusion myonuclei maturing within a syncytial myofiber.

To identify aging-associated changes in transcriptional dynamics, we used Tradeseq, a pro-

gram for comparing pseudotime trajectories across biological conditions (Figure 3.3A) [137]. Al-

though temporal changes in TF expression between myogenic progenitors isolated from young and

aged mice when differentiated in vitro are reported [74, 85, 86], these changes have not been eval-

uated in vivo. Unlike differential gene expression tests that identify changes in transcript levels,

Tradeseq analyses reveal gene expression changes occurring as a function of pseudotime, offering a

more relevant strategy to interrogate temporally-resolved transcriptomic data. Tradeseq was used

to generate expression trajectories for individual genes expressed within B1 and the B2 myonuclear

subset and to conduct statistical tests identifying genes with significantly different pseudotime tra-

jectory patterns between nuclei from young and aged mice (Figure 3.3A). Out of ∼21,000 genes

expressed in B1 nuclei, ∼7,000 exhibited differential pseudotime trajectories, while in the B2 subset

∼5,000 genes were detected with differential pseudotime trajectories (Table S4). We selected the

1000 genes with the most significant p-values from B1 as well as the B2 myonuclear subset compar-
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isons, restricting our analysis to the most significant aging-associated changes during regeneration.

Among these 1000 genes identified from each branch, a group was common to both subsets, surpris-

ing considering the disparate processes represented in these respective segments of the myogenic

pseudotime trajectory (Figure 3.3B). Among B1-specific genes, GO Processes involving localization

of proteins to synapses and myogenic progenitor fusion were detected as exhibiting significantly al-

tered pseudotime in nuclei from aged mice compared to young mice (Figure 3.3C-D; Table S5).

Genes with altered pseudotime in nuclei from aged compared to young mice that are common to

B1 and B2 are involved in T-tubule organization, myofibril assembly, and NMJ formation (Figure

3.3E-F; Table S5), while metabolic processes including glycolysis and the TCA cycle exhibited the

most significant altered pseudotime specific to B2 (Figure 3.3G-H; Table S5). Though the majority

of pseudotemporal alterations in gene expression specific to aged mice are unique to either B1 or B2

nuclei, a minority are common to both branches, raising the possibility that alterations in temporal

expression of genes in B1 are directly related to the pseudotime changes occurring among nuclei

from aged mice in B2.

3.4.5 Genes with altered expression dynamics in aged mice comprise distinct yet

overlapping hierarchies between B1 and B2

Cellular transcriptomes organize into distinct gene networks comprised of groups of co-

expressed genes involved in common biological processes [138–141]. Ensuring temporally coor-

dinated expression of gene networks during regeneration are myogenic TFs, which in response to

specific signals activate or repress gene expression, driving myogenesis. Because of the large num-

ber of pathways regulated by myogenic TFs, perturbed gene expression dynamics in MuSCs and

progenitors may propagate (by direct and indirect associations) through regulatory hierarchies into

later stages of regeneration, affecting transcriptional networks in post-fusion myonuclei. Direct

identification of gene networks involved in myogenesis is difficult but can be inferred by genes ex-

hibiting similar temporal- or co-expression patterns with each other and with TFs [138, 141]. If

in aged mice temporal regulation of gene networks involved in cell fate transitions and terminal
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differentiation of progenitors is altered, myonuclear gene expression and mature muscle function

may be impacted.

To identify TFs putatively regulating genes whose expression timing differs in myogenic

nuclei between young and aged mice in B1, we mined single-cell RNA-seq datasets using the

Archs4 TFs Coexp database with the 1000 genes exhibiting the most significant aging-associated

changes in pseudotime expression dynamics. Querying this database enables the identification of

TFs enriched for their co-expression with provided genes [142]. Among the 1000 genes with the

most significant aging-associated changes in pseudotime in B1, 334 TFs were enriched, each associ-

ated with expression of a gene cohort representing a putative gene network. Predicted co-expressed

TFs include critical myogenic regulators Myf6, Myod1, Myog, Mef2a, and Mef2c, as well as TFs

with less well-established roles in myogenesis Twist1, Smad3, Snai2, Tbx15, Nfat5 (Table S6). The

100 most enriched TF-associated gene groups, comprised of ∼800 unique genes from the initial 1000

genes used for this analysis, were plotted in a correlation matrix, visualizing the degree of over-

lap across these TF-associated gene groups (Figure 3.4A). Hierarchical clustering of TF-associated

gene groups identified 4 distinct clusters (Figure 3.4A; Table S6). Averaged pseudotime expression

patterns of genes comprising the clusters of TF-associated groups were plotted, revealing distinct

pseudotime expression patterns associating with each cluster (Figure 3.5A-D). Qualitatively, a total

of just 6 trajectory patterns were detected across the 100 TF-associated gene groups comprised of

∼800 unique genes represented in the heatmap, suggesting that genes with differential pseudotime

trajectories between young and aged mouse nuclei in B1 comprise hierarchical groups associated

with myogenesis, each with characteristic pseudotemporal expression patterns (Figure 3.5A-D; Ta-

ble S6).

Performing TF co-expression analysis on nuclei from B2, we identified 252 TFs enriched as

co-expressed (Figure 3.3A; Table S6). The 100 most-enriched TF-associated gene groups predicted

from the B2 myonuclear subset were plotted as a heatmap, identifying only a single defined cluster

with minimal overlap among most TF-associated gene groups (Figure 3.4B; Table S6). Additionally,

a greater diversity of pseudotime expression patterns were observed among the B2 TF-associated
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Figure 3.4: Hierarchical clustering of genes with differential pseudotime between B1
and B2. (A) Heatmap of 100 most enriched TF-associated groups from B1 genes with differential
trajectories in nuclei from aged mice. Rows and columns are TF-associated gene groups, and the
heatmap is colored by percent of genes comprising both groups that are shared between them. (B)
Analogous heatmap to A, but for TF-associated gene groups identified from the B2 myonuclear
subset. (C) Venn diagram depicting overlap of TFs predicted as co-expressed among genes with
differential trajectories from either B1 or the B2 myonuclear subset. Overlap was only considered
for the 100 groups with the most significant enrichment from each branch. (D) Heatmap of only TF-
associated gene groups where the TF was predicted as co-expressed among genes with differential
trajectories from both branches. Heatmap is colored by percent of genes overlapping between TF-
associated groups from B1 and B2 myonuclear subset predictions. See also Figure 3.5-3.6 and Table
S6.
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Supplementary Figure 3.5: Gene expression over pseudotime plots of TF-associated gene
groups based on B1 differential trajectory tests. (A) Expression of genes in young- adult
(blue) or aged (orange) mouse nuclei comprising enriched TF-associated gene groups organized by
hierarchical order within each cluster from the heatmap in 3.4A; cluster 1, (B) cluster 2, (C) cluster
3, or (D) cluster 4. Each line represents averaged expression over pseudotime of all genes from each
group. See Figure 3.4 and Supplemental Table. S6 for TFs represented in each cluster and genes
comprising each group.
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Supplementary Figure 3.6: Pseudotime expression plots of TF-associated gene groups
based on B2 differential trajectory tests. (A) Expression of genes in young (blue) or aged
(orange) mouse nuclei comprising enriched TF-associated gene groups, organized by hierarchical
order within each cluster from the heatmap in Figure 3.4B; cluster 1, and (B) all other TF-associated
gene groups. Each line represents averaged expression over pseudotime of all genes from each group.
See Figure 3.4 and Supplemental Table. S6 for TFs represented in each cluster and genes comprising
each group.
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gene groups compared to groups identified from B1 (Figure 3.6A-B), suggesting genes with altered

pseudotime in B2 myonuclei comprise less defined hierarchies compared to genes expressed in B1.

Nevertheless, 63 of the 100 most significant TF predictions from B1 are also present among the

100 most enriched TFs from B2, though the genes comprising these TF-associated gene groups are

largely distinct between B1 and B2 (Figure 3.4C-D; Table S6). Common TFs enriched among genes

with altered pseudotemporal expression dynamics in both B1 and B2 are thus potential regulators of

disrupted gene networks across pre- and post-fusion myogenic nuclei in aged mice. These mutually

co-expressed TFs include those critical for myogenesis (Myf6, Myod1, Myog, Mef2c, and Mef2a),

suggesting that though the genes comprising B1 and B2 myogenic gene networks are minimally

overlapping, genes with disrupted pseudotemporal expression in aged mice are putatively linked

through hierarchical regulatory networks (Figure 3.4D). Thus, during muscle regeneration in aged

mice, temporal alterations may propagate from pre-fusion progenitors to post-fusion myonuclei,

affecting temporal regulation of interconnected gene networks encoding skeletal muscle structural

and metabolic proteins.

3.4.6 Dynamic Time-Warping analysis of myogenic differentiation in young and

aged mice

Whether temporal changes in gene expression occurring in aged mice compared to young

mice are exacerbated as MuSCs commit to terminal differentiation, fuse, and mature as myonuclei,

cannot be inferred from gene network analyses conducted on B1 and B2. To address this question,

an integrated analysis that examines aggregate differences between the transcriptomes of nuclei

from young and aged mice at different regenerative stages is required. We iteratively subsampled

nuclei from the complete pseudotime trajectory (Figure 3.2A), equalizing numbers of nuclei across

injury time points, and subjected them to Dynamic Time-Warping (DTW) alignment. DTW is a

method that aligns points of two independent time series by locally compressing or expanding time

scales for each based on a specified similarity metric, preserving the overall order of each series

but not necessarily a one-to-one correspondence of each point along the trajectory [85, 143, 144]
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. Euclidean distances based on global nuclear gene expression profiles, rather than on changes to

individual gene trajectories, were calculated between nuclei from young and aged mice at different

points in pseudotime.
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Figure 3.5: Dynamic Time-Warping analysis of the myogenic trajectory. (A) Averaged
difference of pseudotime values between aligned myogenic nuclei from young and aged mice, and
isochronic comparisons between (B) young vs. young and (C) aged vs. aged, along the pseudotime
trajectory (See Figure 1C legend for mouse sample sizes). X-axis is the DTW-transformed timescale.
Each gray line is a DTW alignment on a single bootstrap (n = 30). Black line is the average of
bootstraps. Parallel green lines demarcate the hinge region. Dotted red line depicts theoretical
perfect alignment. (D) Pseudotime values for nuclei from young and aged mice plotted by DTW-
transformed indices used to generate A-C. Each gray line is a DTW alignment on a single bootstrap.
The black line is the average of bootstraps. Red line indicates path of theoretical perfect alignment
of the two trajectories. Parallel green lines demarcate the hinge region separating B1 and B2. (E-F)
Similar plots to (D) but the B1 and B2 subsets independently. Gray boxes indicate regions with
most significant distortions of the aged trajectory used for area under the curve analysis.

We plotted the averaged differences of pseudotime values obtained from subsamples of young

and aged-mouse nuclei along each point of the DTW-transformed timescale, revealing predom-

inantly positive deviations of the aged pseudotime trajectory (Figure 3.5A). The magnitude of

deviation is smallest in B1 nuclei, larger in the hinge region, and peaks in the middle of B2 (Figure

3.5A). These deviations are specific to comparisons of nuclei from young compared to aged mice,
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Figure 3.6: Changes in gene expression pseudotime dynamics are more severe than
changes in gene expression levels when comparing myogenic nuclei from aged and
young mice. (A) Scatterplot of average expression values of individual genes with black lines
representing perfect correlations and (B) scatterplot of standard error of gene expression across
pseudotime of individual genes expressed in myogenic nuclei from either young or aged mice. See
Figure 1C legend for mouse sample sizes. (C) A schematic depicting how altered gene expression
dynamics propagate through interconnected transcriptional networks during muscle regeneration.
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as isochronic (i.e., same-age) comparisons reveal minimal deviations in the pseudotime ordering of

nuclei (Figure 3.5B-C).

To quantify the relative magnitudes of aging-associated deviations in pseudotime trajectories

associated with B1 and B2, the aligned pseudotime values for young and aged mouse nuclei were

plotted against each other and compared to a theoretically perfect alignment of the myogenic

trajectories inferred from young and aged mice (Figure 3.5D). Regions of maximal distortion of

the trajectory from aged mice within B1 and B2 were identified and a larger area under the curve

value was calculated for the B2 segment compared to the B1 segment, demonstrating a distinct

increase in magnitude of distortion associated with B2 (Figure 3.5E-F). Thus, independent of

sample size differences across injury timepoints, B2, comprised of primarily maturing myonuclei,

exhibits more significant aging-associated alterations in the myogenic trajectory compared to the

changes occurring in B1 comprised of MuSCs and pre-fusion progenitors.

If temporal processes regulating expression are altered for a given gene, complex downstream

effects may ensue that are independent of persistent changes in gene levels. Because differences in

both gene expression levels and pseudotime expression dynamics were detected during regeneration

when comparing transcriptomes from young and aged mouse nuclei, we asked whether changes in

pseudotime were more or less severe compared to changes in gene levels. Plotting the average gene

expression levels for all genes expressed in nuclei from young mice against those from aged mice

revealed a high correlation (R2 = 0.91) between the two age groups, revealing that the changes

occurring in gene expression levels are discriminatory rather than global in aged mice (Figure

3.6A). In contrast, there was poor correlation (R2 = 0.329) when plotting the standard error of

gene expression across pseudotime for nuclei from young mice against those from aged mice (Figure

3.6B).

3.4.7 Discussion

Gene networks involved in related biological processes require coordinated temporal control

of gene expression [138,139,141,145]. Altering gene expression dynamics regulating these networks
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may interfere with complex cell fate transitions required for progenitor cells to differentiate and

acquire transcriptional states necessary for organ- and tissue-specific functions. During skeletal

muscle regeneration, aging-associated changes in gene expression dynamics are exacerbated during

MuSC differentiation in vitro [85, 86]. However, differentiation in culture is not representative

of regeneration in vivo where transcriptional states associated with mature myonuclei are never

attained [42,74,85,86,120].

We compared changes in timing of gene expression in vivo through pseudotime analysis of

myogenic nuclei sequenced from regenerating skeletal muscle between aged and young mice. This

analysis revealed that the genes exhibiting the largest changes in pseudotemporal expression tra-

jectories appear to comprise distinct transcriptional networks involved in progenitor proliferation,

innervation, and metabolic pathways conferring myofiber contractile speeds [8, 71, 146]. However,

aging effects transcriptomes globally [69], thus we employed DTW analysis, which enabled us to

quantify the aggregate differences in global gene expression dynamics rather than focus on spe-

cific pathways. We identified that specific segments of the pseudotime trajectory exhibit larger

aging-associated differences than others, where peak differences appear in three discrete waves,

each associated with a distinct stage of myogenesis. The first wave occurs in the middle of B1,

where myogenic progenitors are balancing opposing cell-fate choices to terminally differentiate or

self-renew. The second wave of distorted pseudotime, which is larger than the first, occurs in the

hinge region where myogenic cells fuse. The final and largest wave of age-distorted pseudotime

is observed in myonuclei following fusion, where the transcriptional changes driving myonuclear

maturation occur.

During regeneration of skeletal muscle, temporal regulation of gene networks is necessary to

repair muscle and re-acquire muscle function. In aged mice the timing for gene networks driving

myogenesis and muscle maturation diverges from that in young mice and worsens as regeneration

proceeds, potentially propagating through interconnected gene networks associated with expres-

sion of mature muscle genes (Figure 3.6C). Although we have not identified mechanistic details,

our data support that alterations in temporal coordination of gene expression in myogenic networks
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contributes to defects in muscle regeneration and to declining muscle function in aged organisms.

Comprehensive analyses of the mechanisms underlying mistimed gene expression during regenera-

tion in aged-mouse skeletal muscle will require future follow-up studies that are currently imprac-

tical, requiring temporally altering the expression of large numbers of genes in combination with

each other to test the effects on muscle regeneration in young mice. The temporal alterations we

observed in gene networks involved in myogenesis provide a novel insight for aging research to base

future mechanistic studies where altered temporal coordination of myogenic gene expression as well

as changes in the expression levels of specific transcripts contribute to impaired muscle regeneration

and declining muscle function in aging organisms.

3.5 Methods

3.5.1 Mice

Mice were bred and housed according to National Institutes of Health (NIH) guidelines for

the ethical treatment of animals in a pathogen-free facility at the University of Colorado at Boulder.

University of Colorado Institutional Animal Care and Use Committee (IACUC) approved animal

protocols and procedures. Young mice were C57B6 mice, (Jackson Labs Stock No. 000664) between

4 and 8 months old and were a mix of male and female. The aged mice used were F1 mice from

a C57BL/6J and DBA/2J cross (Jackson Labs No. 100006), collected between 24-28 months old

and a mix of male and female. For injuries, mice were anesthetized with 3% isofluorane followed

by injection with 50µL of 1.2% BaCl2 into the left TA and EDL muscle.

3.5.2 EdU labeling and injuries

Mice were anesthetized with isofluorane followed by injected with 50µL of 1.2% BaCl2 into the

left TA and EDL muscle. To deliver EdU, mice were given IP injections of 10mM EdU (Carbosynth)

(Chehrehasa et al., 2009), re-suspended in water, a volume of 100µL per 25g mouse weight.
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3.5.3 Immunofluorescence staining of tissue section

The TA muscle was dissected, fixed for 2h on ice cold 4% paraformaldehyde, and then trans-

ferred to PBS with 30% sucrose at 4◦C overnight. Muscle was mounted in O.C.T. (Tissue- Tek®)

and cryo-sectioning was performed on a Leica cryostat to generate 10uM sections. Tissues and

sections were stored at -80◦C until staining. Tissue sections were post-fixed in 4% paraformalde-

hyde for 10 minutes at room temperature and washed three times for 5 min in PBS. To detect

Pax7 on muscle sections we employed heat-induced antigen retrieval. Post-fixed sections on slides

were placed in a citrate buffer (100mM Sodium citrate containing 0.05% Tween20 at pH 6.0) and

subjected to 6 min of high pressure- cooking in a Cuisinart model CPC- 600 pressure cooker. For

immunostaining, tissue sections were permeabilized with 0.5% Triton- X100 (Sigma) in PBS con-

taining 3% bovine serum albumin (Sigma) for 30 min at room temperature. EdU was visualized

following manufacturers guidelines (ThermoFisher Scientific cat#C10337). Primary antibodies in-

cluded anti- PAX7 (DSHB) at 2 µg/mL and rabbit anti-laminin (Sigma-Aldrich cat#L9393) at

2.5 µg/mL incubated on muscle sections for 1h at room temperature. Alexa secondary antibodies,

donkey anti mouse Alexa Flour 647, donkey anti-rabbit Alexa Flour 555 (ThermoFisher) were used

at a 1:750 dilution and incubated with muscle sections for 1 h at room temperature. Prior to

mounting, muscle sections were incubated with 1µg/mL DAPI for 10 min at room temperature

then mounted in Mowiol supplemented with DABCO (Sigma-Aldrich) as an anti-fade agent.

3.5.4 Microscopy and image analysis

All images were captured on a Nikon inverted spinning disk confocal microscope. Nikon

objectives used were: 10x/0.45NA Plan Apo and 20x/0.75NA Plan Apo Images were processed

using Fiji ImageJ. Confocal stacks were projected as maximum intensity images for each channel

and merged into a single image. Brightness and contrast were adjusted for the entire image as

necessary. PAX7 and EdU quantification Statistical tests were performed on PAX7 quantified cells

per mm2 for N = 3 young and N = 3 aged mice in Prism (GraphPad). Significance was assessed
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using two-tailed unpaired Student’s t-test with two-stage step-up method of Benjamini, Krieger,

and Yekutieli multiple comparison adjustment with a q < 0.05 considered significant. Each N was

generated from an individual mouse.

3.5.5 Nuclear Isolation, 10x genomics, and sequencing

Protocol for nuclear isolation was similar to described previously (Cutler et al., 2017). In

short, 2x replicates were done for both young and aged mice at 0 dpi and 7 dpi. We conducted

3x replicates for aged mice at 4 dpi and 2x replicates for young mice at 4 dpi. TA muscles were

isolated from uninjured (0 dpi), 4 dpi, and 7 dpi young and aged mice and minced with razor blades

prior to mechanical homogenization. Nuclei were filtered (70uM filter), and then separated along

a sucrose gradient with differential centrifugation (33,000rpm for 3hrs at 4C), and the interface

containing single nuclei (between 2.8M and 2.1M sucrose) were collected by pipette. Nuclei were

pelleted (2000g for 10mins at 4C), resuspended in PBS, and stained with DAPI to assess nuclear

purity. Homogenization times and intensity, and sucrose gradient concentrations were optimized to

maximize nuclear numbers and purity. Nuclear concentrations and purity were further evaluated

using the Agilent 2200 TapeStation system (G2964AA) with the High Sensitivity D1000 ScreenTape

(5067-5584). We used the Next GEM Single Cell 3’ v3.1 system and protocol as described. Between

1,600 and 8,000 nuclei were added to each GEM and each sample was sequenced on either an

Illumina Nextseq500 or Novaseq6000 to an estimated depth of 300 million reads.

3.5.6 Software Packages

- Cellranger Software Suite/3.0.1 - FastQC 0.11.8 - R 4.1.1 - Seurat 4.1.1 - monocle3 1.0.0 -

DoubletFinder 2.0.3 - SoupX 1.5.2 - Tradeseq 1.7.7 - DTWpython

3.5.7 Quality control, read alignment, and expression quantification

To assess the quality of Fastq files from sequencing, FastQC was used, evaluating depth

and quality of each replicate. Cellranger was then used to process Fastq files and aggregate tech-
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nical replicates, creating gene-count matrices for each sequencing experiment. For transcriptome

alignment, a custom pre-mRNA mm10 reference package was used as previously described [20,147].

3.5.8 Accounting for experimental noise and doublets

Cellranger-aligned feature matrices were then loaded into R using the load10X() function

from SoupX. Ambient RNA contamination was predicted using default settings of autoEstCont()

and counts were normalized to an estimated noise parameter using adjustcounts(). Doublet contam-

ination was evaluated using the R package DoubletFinder (McGinnis et al., 2019). pK parameter

optimization was conducted for each replicate. Doublet threshold was set to 10% and a pN of 0.25.

Inferred doublets were removed prior to conducting UMAP dimensional reduction in Seurat.

3.5.9 Normalization, dimensional reduction, and nuclear clustering

The tutorial provided by the Mayaan lab was used to guide data normalization (satijalab.

org/seurat/articles/pbmc3k_tutorial). Mitochondria and low-quality nuclei were removed.

Seurat objects were then passed through NormalizeData(), FindVariableFeatures(), ScaleData()

to scale and log normalize gene counts within each sample. Data were then integrated using

the FindIntegrationAnchors() and IntegrateData() functions in Seurat using the reciprocal PCA

(rPCA) algorithim. The integrated Seurat object was then transformed using SCTransform() and

the “glmGamPoi” method, before conducting

dimensional reduction using UMAP and clustering using the shared nearest neighbor (SNN)

modularity optimization based clustering algorithm, adjusting the minimum number of neighbors,

minimum distance, and resolution parameters to achieve adequate separation of nuclear clus-

ters [148]. Identification of nuclear clusters was done manually, using differential gene expression

from the FindMarkers() function between clusters combined with manual literature curation. The

Myoatlas database and webtool (research.cchmc.org/myoatlas/) was of particular help in identify-

ing clusters of nuclei [20].

satijalab.org/seurat/articles/pbmc3k_tutorial
satijalab.org/seurat/articles/pbmc3k_tutorial
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3.5.10 Pseudotime trajectory inference

For trajectory inference, a tutorial to generate pseudotime trajectories from Seurat objects

was used as a guide (cole-trapnell-lab.github.io/monocle3/docs/trajectories/). Briefly, inputting

only myogenic subset of nuclei, gene matrices were first scaled and normalized using preprocess cds()

and batch corrected across individual mice using align cds() to account for technical variability

across experiments. (Haghverdi et al., 2018; Qiu et al., 2017; Trapnell et al., 2014). For UMAP

projection, the minimum number of neighbors and minimum distance parameters were adjusted

to achieve optimal reduction. For clustering with cluster cells(), the k parameter was modulated,

preventing over- or under-fitting trajectory tree inference using learn graph().

3.5.11 Differential expression tests

Differential gene expression was assessed by the Wilcoxon Rank Sum Test in the Seurat

FindMarkers() function. Genes were assessed as significant with an adjusted p-value < 0.05.

3.5.12 Tradeseq analysis and differential trajectory tests

Tradeseq was installed directly from the github repository “statOmics/tradeseq”. The tu-

torial associated with this repository (statomics.github.io/tradeSeq/articles/tradeSeq) was used as

a guide. In short, smoothed gene expression curves were calculated for individual genes using

the fitGAM() function, which fits each genes’ expression over pseudotime to a negative binomial

distribution. The knots parameter was set to 10. For each nuclear subset analyzed (B1 or the

B2 myonuclear subset), curves were inferred for genes normalized to only nuclei within the same

subset, ensuring accurate representations of a genes’ pseudotime expression distribution specific to

each subset. The Tradeseq package offers multiple tests for evaluating differences in pseudotime

trajectories between two groups. Based on their descriptions, the PatternTest() was chosen as the

test most relevant for our analyses. The PatternTest() function ranks genes with a p-value and a

Wald statistic. The top 1000 genes with the largest Wald statistic were selected for GO analyses

(see next section).
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3.5.13 GO analyses and TF-associated group identification using a coexpression

database

GO analyses identifying differentially expressed genes were conducted using Panther [129,

149]. A background gene set was used comprising all genes expressed in myogenic nuclei detected

from sequencing. GO Biological Processes Complete hierarchy was used to organize results. Ex-

ample categories in figures were chosen as contained within ranked clusters. Json files were then

downloaded, and individual Tradeseq-generated smoothed expression curves for genes comprising

each category group were used for plotted. The Archs4 TF coexpression database was queried

using the Enrichr webtool [142, 150]. This tool enables querying existing single-cell sequencing

experiments to detect whether inputted genes are enriched for their co-expression with TFs across

a collection of single-cell experiments.

3.5.14 Hierarchical clustering of TF-associated gene groups (correlation matrix)

From the top 100 most enriched TF-associated gene groups, a matrix was constructed where

the overlap was determined as the percent of unique genes comprising both groups that are shared

between each group. Hierarchical clustering of this matrix was conducted using the default settings

for heatmap.2() function in R, using Euclidean distances and the complete agglomeration method

for clustering. Dynamic Time-Warping (DTW) analysis DTW is a method for aligning the data

points of two independent time series by locally compressing or expanding the scales for both time

series based on the comparison between the time series of some relevant metric. This process

preserves the order of each time series, but not necessarily a one-to-one correspondence of the

data points between them. In our case the independent time series for young and aged myogenic

nuclear populations was derived from the pseudotime analysis. The metric for comparison was

the Euclidean distance between the global gene expression profiles for each individual nuclei. To

generate each young and aged mouse time series to which we would apply DTW, we first needed

to subsample the nuclei of each injury timepoint to equal number, across all dpi. This was done to
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account for the technical bias that would result from unequal tissue sample sizes from each animal,

which would result in an over/under representation of nuclei for that timepoint based on the size of

the tissue sample. Instead, the relevant comparison to make is between the distributions of nuclei

across the injury timepoints that comprise the transcription trajectory, which could be achieved

by equally subsampling the nuclei to equal number, prior to applying DTW. One key assumption

inherent to DTW that also needed to be accounted for is that the starting and ending points of each

time series correspond to one another. In our case, we conformed to this assumption by constructing

our pseudotime series from cell populations that start from MuSCs and end in mature myonuclei

for both young and aged mice. This way we can assume, that nuclear populations from both young

and aged mice are in the same transcriptional states at the start and end of the trajectories, which

conforms with the assumed alignment of the first and last points of the two trajectories by the DTW

algorithm. We used the fastdtw (v0.3.4) Python package implementation of the DTW algorithm

to perform our analysis (see supplemental for code) and used Euclidean distance as our metric for

the cell comparison. We also tried the common cosine distance metric to check the robustness of

our alignments, which showed comparable results. Also results reported herein are computed using

the Euclidean metric. In order to estimate the variation in the alignment of our trajectories, we

performed DTW on 30 independent random subsamples (with replacement). For each subsampled

trajectory, ∼1,500 nuclei were sampled from each of the 0 dpi, 4 dpi, and 7 dpi timepoints. We

calculated an average trajectory from the 30 trajectories. Both the average trajectory and the

distribution of the individual trajectories can be seen in Figure. 3.5A-D.



Chapter 4

Reversing cell-intrinsic MuSC aging defects does not improve skeletal muscle

aging

4.1 Chapter note

This project was developed by a post-doctorate researcher in the Olwin lab, Dr. Alicia

Cutler. Dr. Cutler conducted all wet-lab experiments, including generation of scRNA-seq and

snRNA-seq datasets. My contribution to this project was the analysis and interpretation of single-

cell sequencing experiment conducted by Dr. Cutler that comprise Figure 4.2 and Supplemental

Figure 4.2 in this chapter.

4.2 Abstract

With an increasingly elderly world population, understanding and reducing aging associated

frailty derived from reduced muscle function is necessary to increase healthspan. Cell intrinsic

defects in muscle stem cells, or satellite cells, make them less able to maintain and repair skeletal

muscle in aged individuals. Reversing the cell intrinsic aging phenotype of muscle stem cells could

potentially ameliorate decreased muscle function in muscle of aged individuals. A drug inducible

FGF receptor 1 (FGFR1) rescues muscle stem cell aging deficits in vitro. We bred mice to express a

constitutively active FGFR1 (caFGFR1) specifically in muscle stem cells to test whether caFGFR1

expression improved muscle stem cells and skeletal muscle in vivo. While caFGFR1 expression was

sufficient to rescue cell intrinsic aging defects, the rejuvenated muscle stem cells did not affect a

broader improvement of skeletal muscle morphology or regeneration. Our findings emphasize the
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need to approach skeletal muscle aging as a complex multifactorial process in need of multifaceted

interventions.

4.3 Introduction

Skeletal muscle mass, function, and regenerative capacity decline with age, which in elderly

individuals increases frailty, decreases ambulation, and increases morbidity [151–154]. By 2050 20%

of the world population will be over the age of 60 [146] costing an enormous amount in associated

health care. Increasing health span and quality of life for the elderly by ameliorating or slowing

aging related muscle declines will dramatically decrease societal burden and health costs associated

with our increasingly aging population.

Skeletal muscle in elderly individuals is less capable of regeneration at least in part due to

cell intrinsic aging defects in the resident muscle stem cells (MuSC) or satellite cells. Muscle from

old individuals contains fewer MuSCs than that from in younger individuals and the MuSCs that

are present have inherently reduced regenerative capacity [155, 156], undergo a lower percentage

of self-renewing asymmetric divisions [74, 156], and undergo increased in spontaneous premature

differentiation [8,74]. Although exposing aged muscle to a young environment improves regeneration

[76, 157], transplantation of MuSC from aged muscle into a young environment does not rescue

MuSC function, indicating cell intrinsic aging defects [74]. These cell intrinsic MuSCs compromise

myofiber maintenance and regeneration, reversing these deficiencies in MuSCs could allow them to

repair myofibers improving muscle aging phenotypes.

These aging- associated MuSC defects coincide with reduced MuSC reactivity to extracellular

signaling, including Fibroblast Growth Factor (FGF) signaling [8, 52, 74–80, 82]. MuSCs express

predominantly FGF receptor 1 (FGFR1) with moderate levels of FGFR4 and low levels of FGFR2

and FGFR3 [107, 158]. A drug inducible FGF receptor 1 (FGFR1) in MuSCs partially rescues

self-renewal in MuSCs from aged mice and rescues engraftment of MuSCs transplanted from aged

mice to young mouse [74].Similarly, activating ß1-integrin, a cell surface protein which cooperates

with FGF ligands in FGF signaling, improves FGF signaling in muscle of aged mice and rescues
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myofiber size and strength in a mouse model of Duchenne’s muscular dystrophy [79]. Together

these findings suggest that activating FGF signaling in MuSC in vivo will rescue muscle aging

phenotypes.

4.4 Results

4.4.1 Generation of inducible caFGFR1 mice

Mice were bred to temporally and spatially express a constitutively active FGFR1 (caFGFR1)

[159] (Figure 4.1A) where the caFGFR1 transgene is a chimeric receptor consisting of the mu-

tant FGFR3c(R248C) extracellular and transmembrane domains [160] fused to the intracellular

FGFR1 tyrosine kinase domain with a C-terminal MYC epitope tag [31,161]. To determine the ef-

ficiency of the genetic system including three transgenes, Pax7CreERT2; LSL-rtTA; tetO:caFGFR+

(caFGFR1+) mice and Pax7CreERT2; LSL-rtTA; tetO:caFGFR1- (caFGFR1-) mice were treated

with tamoxifen and fed doxycycline-containing chow for 5 days, myoblasts isolated and cultured in

the presence or absence of doxycycline. The myoblasts were fixed, stained for DAPI and scored for

immunoreactivity for PAX7, MYC, and FGFR3, which is not expressed in SCs or their progeny [20]

(Figure. 4.11B). In caFGFR1+ cultures with doxycycline, 58% of the PAX7+ cells are immunore-

active for MYC or FGFR3 (Figure 4.1C). We further tested whether caFGFR1 expression was

temporally responsive by treating caFGFR1+ mice with tamoxifen and then a combination of

doxycycline or vehicle in vivo and in vitro. While Gapdh transcripts were detectable by RTPCR

under all conditions MuSCs maintain transgene expression only in the presence of doxycycline as

SCs isolated and cultured from mice fed doxycycline chow express caFGFR1 only if doxycycline

is provided in the culture media (Figure 4.1D). Thus, caFGFR1 transgene expression is reversible

and changes observed upon expression of the receptor are the result of the activated receptor.

If intracellular signaling in myoblasts isolated from caFGFR+ mice1 signaling replace smim-

ics effects of FGF-2 addition to the media, then the recombined MuSCs should be less unresponsive

to added FGF-2. MuSCs explanted from recombined caFGFR1+ and caFGFR1- mice were cul-
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tured in the presence and absence of doxycycline and with or without FGF-2, followed by EdU

addition 2 hours prior to fixing and staining for immunoreactivity to PAX7 and ClickIT chem-

istry for EdU (Figure 4.1E). Addition of FGF-2 to either caFGFR1+ or caFGFR1- cultures yields

∼75% PAX7+/EdU+ cells and addition of FGF-2 and doxycycline to caFGFR1+ cultures does

not increase the percent of PAX7+/EdU+ cells compared to FGF-2 addition alone (Figure 4.1E).

Activation of FGFR1 signaling replaces mimics FGF-2 addition in recombined cells and thus, we

asked if activated caFGFR1 would partially restore age-related losses of FGF signaling.

MuSCs isolated from aged mice are less proliferative and differentiate prematurely compared

to MuSCs isolated from young mice, in part due to loss of FGF responsiveness [74, 79]. Simi-

larly, MuSCs from aged mice are less resilient in response to stress. Primary myoblasts isolated

from 24-month-old caFGFR1+ mice were cultured in high serum growth media with or without

doxycycline, followed by a 2hr pulse of EdU (Figure 4.1F). Proliferating MuSCs were increased

3-fold by doxycycline addition, which also reduced differentiation by 4-fold compared to MuSCs

cultured with with vehicle only demonstrating caFGFR1 expression rescues age-associated pro-

liferation deficits and prevents age-associated premature differentiation (Figure 4.1G-H). In low

serum FGF-2 maintains explanted SCs from young mice in a quiescent, undifferentiated state and

re-introducing serum promotes cell cycle re-entry, while explanted SCs from aged mice prematurely

differentiate [74]. We induced a reserve/quiescent state by reducing serum and then assessed the

ability of the reserve cells to re-enter the cell cycle upon reintroduction of high serum growth media

(Figure 4.1I) [74,162]. Less than 3% of the SCs from caFGFR1- mice were reentered the cell cycle

upon serum restoration, while 8-fold more caFGFR1+ SCs reentered the cell cycle 24h after reintro-

ducing serum (Figure 4.1J). SCs expressing caFGFR1 cultured in low serum differentiation media

with doxycycline or vehicle (Figure 4.1K) were equally capable of differentiating as the percent of

myonuclei in myosin positive cells were statistically indistinguishable (Figure 4.1L). Thus, signaling

from caFGFR1, which rescues cell intrinsic MuSC aging phenotypes does not prevent MuSCs from

differentiating.
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Figure 4.1: caFGFR1 expression. (A) Schematic of caFGFR1 mouse genetics (B) Immunofluo-
rescence images of MuSCs isolated from caFGFR1+ and caFGFR1- mice treated with doxycycline
or vehicle and tested for immunoreactivity to Pax7 (MuSC marker), Myc, and FGFR3. Bar=50 um
C) Quantification of percentage of Pax7+ cells positive for FGFR3 (n=4 primary myoblast isolates
from young mice) comparison by t-test. D) RTPCR gels of transcripts isolated from caFGFR1+
cells treated with doxycycline in vivo and/or in vitro. Primers to the chimeric caFGFR1 tran-
script or GAPDH were provided. E) Quantification of precent EdU positive Pax7 cells treated with
doxycycline (Dox) FGF-2 or both. n=3 primary myoblast isolates from young mice comparison by
one-way ANOVA. (F) Schematic proliferation and premature differentiation experimental approach
for primary myoblasts isolated from old (20-24 month old) mice. (G) Quantification of EdU+ my-
oblasts, identified by syndecan4 immunoreactivity, under growth conditions. H) Quantification of
nuclei in myosin+ cells under growth conditions. (I) Schematic of differentiation experimental de-
sign (J) Quantification of nuclei in myosin+ cells under differentiation conditions. (K) Schematic of
stress recover experimental design. (L) Quantification of EdU+ myoblasts, identified by syndecan4
immunoreactivity, under growth conditions following stress from serum withdrawal. For G-L n=4
primary myoblast isolates comparisons by t-test.
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4.4.2 caFGFR1 expression increases MuSC number and asymmetric division in

aged mice

Ectopically activating FGFR1 signaling in SCs from aged mice restores asymmetric division

and presumably SC self-renewal, the loss of which is a hallmark of SCs from aged mice [74].

Expressing a constitutively active FGFR1 in cultured SCs from aged mice enhances the proliferative

capacity and prohibits SCs from prematurely differentiating restoring them to a more youthful

behavior. Since aged mice possess half of the youthful complement of SCs we asked if caFGFR1

signaling in vivo could restore MuSCs numbers in aged mice. Aged (20-26 month old) caFGFR+

and caFGFR1- mice treated with tamoxifen and maintained on doxycycline chow for 30 days prior

to collection (Figure 4.2A) were assayed for SC numbers in the tibialis anterior (TA) muscles.

When scored for immunoreactivity to PAX7, cross sections of TA muscles from aged caFGFR1+

mice possessed 1.7-fold more SCs than comparably aged caFGFR1- mice (Figure 4.2B, 4.1A).

Concomitant with the increase in SC numbers, we observed a >2-fold increase in asymmetrically

dividing SCs in myofibers explanted from aged caFGFR1+ mice compared to aged caFGFR1- mice

(Figure 4.2C-D). The increase in asymmetrically dividing caFGFR1+ SCs restores 75% of the

asymmetrically dividing population of SCs from young mice indicating that caFGFR1 expression

rescues the majority of age-related declines in asymmetric division [74].

Expressing ectopic caFGFR1 in SCs from aged mice rescues cell intrinsic aging phenotypes

in vitro and in vivo, suggesting caFGFR1 expression rejuvenates MuSCs in aged mice to a youthful

state. If SCs from aged mice are rejuvenated by caFGFR1 expression then caFGFR1+ transcrip-

tomes would appear more youthful than caFGFR1- transcriptomes. To assess the transcriptomes

of mononuclear cells and myonuclei in skeletal muscle we employed three distinct sequencing strate-

gies: 1) single cell RNA-sequencing (scRNA-seqs) of all mononuclear cells isolated from muscle, 2)

scRNA-seq of enriched SCs, and 3) single nuclear RNA sequencing (snRNA-seqs) optimized to cap-

ture myonuclei from myofibers (Figure 4.2E, 4.2A) [117]. Clustering single-cells and single-nuclei

together revealed cell types expected from skeletal muscle identified by cell-type specific markers
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Figure 4.2: caFGFR1 expression partially rejuvenates MuSCs in old mice (A) Treatment
of old mice (20-24 month) with tamoxifen and 30 days of doxycycline. (B) Quantification of Pax7+
cells/mm2. n=3-4 mice per genotype comparisons by one way ANOVA. (C) Immunofluorescence
images of MuSC on isolated myofibers isolated from aged mice. Bar= 10 um.
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Figure 4.2: continued (D) Quantification of the percentage of asymmetric MuSC divisions on
isolated myofibers n=3-9 mice with >100 MuSC quantified per mouse, comparisons by one way
ANOVA. E) Schematic of single cell and single nuclear sequencing experiments from old caFGFR1+
and caFGFR1- mice. (F) UMAP of all cells and nuclei pooled from the 3 sequencing experiments.
(G) Inset of the two MuSC clusters colored by cluster and by genotype. (H) Violin plots of Fgfr1 and
Myc transcript levels in the putative recombined and non-recombined clusters. G) Quantification of
the percent of MuSCs isolated from caFGFR1+mice in the recombined and non-recombined clusters
and of the percent of the recombined and non-recombined clusters composed of each genotype. (J)
Volcano plot comparing transcripts between the recombined and non-recombined MuSC clusters.
Transcripts of special note with greater than 1.5 fold change compared to control are marked in
red and labeled. Violin plots of transcript levels between recombined and non-recombined MuSC
clusters for transcripts associated with (K) senescence, (L) proliferation, and (M) quiescence. (N)
Venn diagrams of GO terms of the upregulated transcripts and down regulated transcripts for the
comparison of recombined and non-recombined clusters (pink) and comparison of MuSCs isolated
from young and old mice (green). (O) Quantification of the fold enrichment relative to background
of the concordant GO categories of up regulated transcripts.

(Figure 4.2F, 4.2B-D). Two distinct MuSC clusters were identified, one enriched in cells isolated

from caFGFR1+ mice and one enriched in cells from caFGFR1- mice (Figure 4.2G). As expected,

MuSCs in the predominantly caFGFR1+ cluster were enriched for Fgfr1 and Myc transcripts

relative to the predominantly caFGFR1- cluster (Figure 4.2H), indicating that the predominant

MuSC cluster from caFGFR1+ mice represented recombined MuSCs and the other myogenic clus-

ter, non-recombined SCs. When quantified, 71% of MuSCs isolated from caFGFR1+ segregate

into the recombined cluster (Figure 4.2I), consistent with the recombination frequencies deter-

mined for caFGFR1+ cultured myoblasts (Figure 4.1D). We compared the recombined SCs and

non-recombined MuSCs identifying 127 differentially regulated transcripts (Figure 4.2J, Table S1).

Transcripts associated with senescence [163,164] (Figure 4.2K) and quiescence [165] (Figure 4.2M)

were downregulated while transcripts associated with SC activation [35,49,162] (Figure 4.2L) were

up regulated.

To further examine whether caFGFR1+ MuSCs were rejuvenated, we compared the gene

ontology (GO) terms of the differentially expressed transcripts between the recombined and non-

recombined MuSC clusters from old caFGFR1+ mice and and old caFGFR1- mice to the GO

terms obtained from differentially expressed transcripts between young (3-6 month old) and aged
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old caFGFR1+ and caFGFR1- mice treated with doxycycline for 30days Bar=50 um. PAX7 pink,
laminin Red, dapi blue.

(24 month old) mice [166–168] revealing 16 GO terms upregulated in caFGFR1+ recombined SCs

and SCs from young mice (Figure 4.2N). These shared processes between caFGFR1+ recombined

and young mouse SCs were associated with protein translation, altered metabolism, and nega-

tive regulation of apoptosis (Figure 4.2O). An overlap of 331 depleted GO terms were detected in

caFGFR1+ recombined MuSCs and MuSCs from young mice (Figure 4.2N) associated with ATP
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production, response to growth factors, and positive regulation of apoptosis (Figure 4.2O). The sim-

ilar overlap in regulated GO processes detected when comparing recombined and non-recombined

MuSCs with those in MuSCs isolated from young and aged mice suggests that the processes altered

by caFGFR1 expression are processes affected by aging. Thus, caFGFR1 expression is altering

MuSC transcriptomes to be more similar to MuSCs from young mice.

4.4.3 caFGFR1 expression does not improve skeletal muscle

Having determined that caFGFR1 expression rescues cell intrinsic aging in MuSCs, we next

asked whether rejuvenating MuSCs could restore skeletal muscle in aged mice to a more youthful

state. Despite random insertion, the caFGFR1 transgene did not decrease mouse lifespan (Figure

4.1A). We returned to our sc/snSeq data set comparing caFGFR1+ and caFGFR1- mice that were

maintained on doxycycline chow for 30 days (Figure 4.3A), and focused on comparing myonuclei

nuclei isolated from aged caFGFR1+ and caFGFR1- mice (Figure 4.3F, 4.2A,D). Among 730

differentially expressed transcripts between myonuclei isolated from caFGFR1+ and caFGFR1-

mice (Figure 4.3B, Table S2) the 310 enriched in caFGFR1+ myonuclei belonged to GO processes

largely associated with proteostasis and denervation response (Figure 4.3A). Transcripts depleted

from caFGFR1+ myonuclei were associated with GO processes linked to metabolism (Figure 4.3B).

Altered levels of proteostasis linked transcripts led us to ask whether caFGFR1 expression in MuSC

caused muscle hypertrophy. However, TA muscle wet weight (Figure 4.3C), myofiber number

(Figure 4.3D), and myofiber diameter (Figure 4.3E-F) in aged caFGFR1+ mice were unchanged

compared to caFGFR1- controls. Prompted by the changes in metabolic transcript levels we asked

whether caFGFR1 expression affected myofiber type, but myofiber type distribution (Figure 4.3G)

was not significantly different between caFGFR1+ and caFGFR1- TA muscles.

While the myofibers were not detectably altered by MuSC caFGFR1 differentially expressed

myonuclear transcripts suggested that the interactions between MuSCs, the myofiber, and other

cell types may change in response to caFGFR1 expression. MuSCs reside in a niche nestled against

the myofiber, close to capillaries [169] and are enriched at the neuromuscular junction (NMJ) [73].
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Figure 4.3: MuSC caFGFR1 expression does not affect muscle in aged mice. A) Treatment
of old mice with tamoxifen and 30 days of doxycycline. B) Volcano plot comparing myonuclear
transcripts from caFGFR1+ and caFGFR1- mice. C) Quantification of TA muscle wet weight from
old caFGFR1+ and caFGFR1- mice n=17-20 mice, comparison by t-test. D) Quantification of
the number of myofibers in a full TA muscle section from caFGFR1+ and caFGFR1- old mice
n=3 mice with 3 full TA sections quantified per mouse comparison by t-test. E) Distribution of
myofiber minimum Feret diameters in the TA n=4 mice with >500 myofibers quantified per mouse
F) Median minimum Feret diameter for TA muscles from caFGFR1+ and caFGFR1- old mice
n=5-7 mice comparison by t-test.
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Figure 4.3: continued G) Quantification of the percentage of each fiber type in TA muscle sec-
tions from old caFGFR1+ and caFGFR1- mice n=3-4 mice with 3 full TA sections quantified
per mouse comparisons by one way ANOVA. H) Volcano plot comparing endothelial transcripts
from caFGFR1+ and caFGFR1- mice. J) Volcano plot comparing Schwann cell transcripts from
caFGFR1+ and caFGFR1- mice. K) Quantification of number of CD31+ capillaries/myofiber in TA
muscles from old caFGFR1+ and caFGFR1- mice n=4-6 mice comparison by t-test. L) Quantifica-
tion of neuromuscular junction complexity (represented as Bungarotoxin+ area/endplate volume)
on individual myofibers isolated from the extensor digitorum longus of caFGFR1+ and caFGFR1-
mice n=4-7 mice with ¿100 NMJs quantified per mouse comparison by t-test. L) Quantification
of NMJ innervation on individual myofibers n=4-7 mice with ¿100 NMJs quantified per mouse
comparison by one way ANOVA no values were significantly different.

caFGFR1+ myonuclei expression of of transcripts associated with glycogen processing and the

electron transport chain was depleted, suggesting a shift in the balance of oxidative and glycolytic

metabolism (Figure 4.3B). Additionally, the endothelial cell population was underrepresented in the

caFGFR1+ derived samples compared to the caFGFR1- samples but few transcripts were differ-

entially regulated between caFGFR1+ and caFGFR1- endothelial cells, suggesting an overall shift

in cell abundance (Figure 4.3I). We asked if vascularization was altered in caFGFR1+ muscle. We

quantified the number of capillaries per myofiber by PECAM1 immunoreactivity but detected no

difference in vascularization between caFGFR1+ and caFGFR1- TA muscles (Figure 4.3K, Figure

4.3C). Similarly, caFGFR1+ myonuclei were enriched in transcripts associated with denervation

response and a large numbers of transcripts (1141) were differentially regulated in Schwann cells

isolated from caFGFR1+ mice compared to caFGFR1- mice (Figure 4.3J) suggesting that the NMJ

in caFGFR1+ mice may be altered. Increased MuSC contribution to NMJs improves innervation

in old mice, thus the increased MuSC content of caFGFR1+ muscles may improve myofiber inner-

vation. To evaluate whether caFGFR1 expression reduced denervation myofibers in aged mice [73],

we isolated myofibers and evaluated NMJ complexity (Figure 4.3L, Figure 4.3D) and innervation

(Figure 4.3L-M, Figure 4.3E). Neither measure was significantly different between caFGFR1+ and

caFGFR1- muscles. These data indicate that rejuvenating MuSCs is insufficient to broadly improve

skeletal muscle in aged mice and restore more youthful muscle phenotypes.
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4.4.4 caFGFR1 MuSC do not improve skeletal muscle regeneration

While skeletal muscle does not appear rejuvenated by expressing caFGFR1 in MuSCs for 30

days, perhaps longer exposure is required to alter muscle phenotypes in aged mice. As a proxy

for this, we tested whether caFGFR1 expression MuSCs rescues age-associated deficits in skeletal

muscle regeneration and thus, may contribute to long-term improvement of the muscle. Upon

injury, caFGFR1+ and caFGFR1- aged mice were maintained on doxycycline chow for 30 days, the

muscle collected, and myofiber diameter and MuSC content quantified (Figure 4.4A). Myofibers

were significantly smaller in regenerated caFGFR1+ muscles than caFGFR1- TA muscles (Figure

4.4B-C; Figure 4.4A). Following regeneration, MuSC number was increased in both caFGFR1+

and caFGFR1- muscles to the same level, similar to that observed in young mice (Figure 4.4D).

Because caFGFR1+ mice fed doxycycline for 30 days have nearly two-fold more MuSCs in

the TA muscle than caFGFR1- mice, mice pretreated with doxycycline could rescue age related

muscle regeneration deficits. Recombined caFGFR1+ and caFGFR1- mice were fed doxycycline

chow for 30 days prior to TA muscle injury and then maintained on standard chow for 30 days of

regeneration (Figure 4.4E). Despite entering regeneration with more MuSCs, caFGFR1+ myofiber

diameter was significantly smaller than the myofiber diameter in caFGFR1- mice, (Figure 4.4F-G;

Figure 4.4B). Doxycycline pretreated caFGFR1+ and caFGFR1- muscles contained comparable

numbers of MuSCs post regeneration (Figure 4.4H). Together these results establish that neither

partially rejuvenating MuSCs nor increasing MuSC number by ectopically expressing caFGFR1

rescue age-related deficiencies in regenerating muscles of aged mice.

4.4.5 Discussion

Because a drug inducible FGFR1 rescued aging associated defects in cultured MuSC and in

transplantation, we tested whether FGFR1 activation would rescue muscle aging in vivo. caFGFR1

expression rescued MuSC cell intrinsic defects: cell number, resistance to stress and premature dif-

ferentiation, and asymmetric differentiation rates. The transcriptomic differences between caFGFR1+
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Figure 4.4: caFGFR1 expression does not rescue muscle regeneration in aged mice. A)
Schematic of muscle injury and regeneration in the presence of doxycycline. B) Distribution of
minimum Feret diameters of regenerated myofibers in TA muscle of old caFGFR1+ and caFGFR1-
mice. n=4 mice with ¿500 myofibers quantified per mouse. C) Quantification of median minimum
Feret diameter of regenerated myofibers from caFGFR1+ and caFGFR1- mice n=4 mice comparison
by t-test. D) Quantification of number of PAX7+ MuSC per mm2 in regenerated TA muscle from
caFGFR1+ and caFGFR1- mice n=4-5 mice comparison by t-test. E) Schematic of muscle injury
following 30 days of doxycycline treatment with regeneration in the absence of doxycycline. F)
Distribution of minimum Feret diameters of regenerated myofibers. G) Quantification of median
minimum Feret diameter of regenerated myofibers n=3-4 mice with >500 myofibers quantified per
mouse comparison by t-test. H) Quantification of number of PAX7+ MuSC per mm2 in regenerated
TA muscle n=4 mice comparison by t-test.
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Supplementary Figure 4.4: (A) Representative images of regenerated TA muscles from old
caFGFR1+ and caFGFR1- mice with regeneration in the presence of doxycycline. (B) Repre-
sentative images of regenerated TA muscles from old caFGFR1+ and caFGFR1- mice pretreated
with doxycycline and then with regeneration in the absence of doxycycline. Bar=50uM.
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and caFGFR1- MuSCs isolated from old mice were similar to the differences between MuSCs iso-

lated from young adult and old mice, supporting a broader rejuvenation of the MuSC transcrip-

tome. However, despite rescuing age associated deficiencies in MuSC, caFGFR1 expression did not

improve skeletal muscle morphology.

Recently, Wang et al reported that increasing EGF signaling in MuSCs of x-linked muscular

dystrophy model (mdx) not only rescues disease phenotypes in the MuSCs but also muscle histology

and function [104]. Because EGF was identified in a screen for promoters of MuSC asymmetric

division, the proposed mechanism of improving muscle was increased MuSC asymmetric division.

That stimulating EGF signaling broadly rescues muscle phenotypes in mdx mice but stimulating

FGF signaling in MuSC of old mice rescued only MuSC intrinsic phenotypes, including asymmetric

division, could reflect a combination of three differences. First, we expressed caFGFR1 specifically

in MuSC via transgene while EGF signaling was stimulated by introducing an EGF expression

plasmid into the skeletal muscle resulting in EGF ligand available to all cell types. Second, while

some mdx phenotypes are similar to aging phenotypes these two states are fundamentally different.

Third, although both EGF and FGF signaling promote MuSC asymmetric division, they may do

so through distinct biochemical pathways. EGF signaling may stimulate a pathway separate from

asymmetric division that promotes improved muscle health.

Similarly, the recombined caFGFR1+ MuSC had lower levels of senescence associated tran-

scripts; however, reduced MuSC senescence did not improve overall muscle health. Eliminating

senescent cells either, genetically or pharmacologically, improves muscle phenotypes in both aging

and disease [170–172]. This surprising discordance could arise from either the need to remove senes-

cent cells of many different lineages to positively affect the muscle or that recombined caFGFR1+

MuSCs expressed reduced levels of senescence associated transcripts but were not ablated. In either

case, it is clear that simply reducing MuSC senescence is insufficient to ameliorate the effects of

aging.

Together our findings that caFGFR1+ expression in MuSCs rescues cell-intrinsic age asso-

ciated defects but does not improve the muscle holistically offer further support that approaches
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to tackle the effects of aging will require multifactorial interventions that target multiple cell types

and processes. Because MuSCs maintain muscle throughout life repairing damage and supporting

exercise mediated benefits, MuSCs are an attractive target for gene or cell-based therapies intended

to improve muscle health in aging and disease. However, MuSCs make up only 2-7% of nuclei in

adult skeletal muscle [33], and basal rates of MuSC activation and fusion in old mice are notably

low [173]. Experimental interventions that have had the greatest effect on reducing muscle aging

phenotypes have involved broad systemic treatments like ablating all senescent cells, caloric re-

striction, exercise, or heterochronic parabiosis. So, while correcting cell intrinsic aging defects in

MuSCs will likely be necessary to tackle some aging phenotypes, simply focusing on the MuSCs is

insufficient to reverse the negative effects of aging.

4.5 Methods

4.5.1 Mice

Mice were bred and housed according to National Institutes of Health (NIH) guidelines for

the ethical treatment of animals in a pathogen-free facility at the University of Colorado at Boulder.

The University of Colorado Institutional Animal Care and Use Committee (IACUC) approved all

animal protocols and procedures. Pax7iresCre; ROSA26LSLrtTA; caFGFR1 mice were generated

by crossing C57Bl/6 (Jackson Labs, ME, USA), Pax7iresCre mice [31], ROSA26-rtTA mice [161]

(Jackson Labs), and conditional caFGFR1 transgenic mice [159]. Mice from 20-24 month old mice

were considered old. Initial observations in a small cohort of aged mice suggested a sex difference,

consequently, unless otherwise noted experiments were restricted to male mice.

4.5.2 Tibialis anterior injuries and tamoxifen injections

Mice were anesthetized with isoflurane, received sustained release Buprenorphine (ZooPahrm)

and meloxicam as analgesics, and supportive warmed saline, and the left TA muscle was injected

with 50uL of 1.2% BaCl2. TA muscles were harvested at the indicated time points post injury.
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4.5.3 Primary muscle stem cell isolation

Hindlimb muscles were dissected, minced, and digested in Hams F12 (Gibco) containing

400U/ml collagenase (Worthington) for 60 minutes at 37°C. Digest was quenched with serum con-

taining media and cells filtered through 100um, 70um and 40um Cells were maintained in Hams

F12 media supplemented with Myocult (StemCell Technologies) and 0.8 mM CaCl at 37°C in 5%

CO2. Doxycycline was included at 1 ug/ml as experimentally indicated. If required, cells were

incubated with 10uM 5-ethynyl-2’-deoxyuridine (EdU – Life Technologies) for two hours prior to

fixation. Cells were fixed in 4% paraformaldehyde for 10 minutes and then processed for immuno-

cytochemistry.

4.5.4 Primary myofiber isolation

Individual extensor digitorum longus myofibers were isolated cultured and immunostained

according to [174]. Extensor digitorum longus muscles were dissected and digested in Hams F12

containing 400-U/mL collagenase at 37 °C for 1.5 h. Collagenase was inactivated by the addition

serum containing media. Individual myofibers were gently isolated by trituration maintained in

Ham’s F-12 supplemented with 15% horse serum, 0.8mM CaCl, and 50nM FGF-2 at 37°C in 5%

CO2. Doxycycline was included at 1 ug/ml as indicated. Myofibers were fixed in 4% paraformalde-

hyde for 10 minutes and then processed for immunocytochemistry.

4.5.5 Immunohistochemistry

TAmuscles were dissected and either immediately embedded in O.C.T. (Tissue-Tek) and flash

frozen in liquid nitrogen (for fiber type staining) or fixed on ice for 2hrs with 4% paraformaldehyde,

and then transferred to PBS with 30% sucrose at 4C overnight. Muscle was mounted in O.C.T.

(Tissue-Tek) and cryo-sectioning was performed on a Leica cryostat to generate 10um thick sections.

Tissue sections were post-fixed in 4% paraformaldehyde for 10 minutes at room temperature (RT)

and washed three times for 5 min in PBS. Immunostaining with anti-Pax7, anti-Laminin antibodies

required heat-induced epitope retrieval where post-fixed slides were placed in citrate buffer, pH 6.0,
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and subjected to 6 min of high pressure-cooking in a Cuisinart model CPC-600 pressure cooker.

All other antibodies did not require antigen retrieval and so proceeded directly to immunostaining.

For immunostaining, tissue sections were permeabilized with 0.25% Triton-X100 (Sigma) in PBS

containing 2% bovine serum albumin (Sigma) for 60 min at RT. Incubation with primary antibody

occurred at 4°C overnight followed by incubation with secondary antibody at room temperature

(RT) for 1hr. Primary antibodies included mouse anti-Pax7 (Developmental Studies Hybridoma

Bank, University of Iowa, USA) at 1:750, rabbit anti-laminin (Sigma-Aldrich) at 1:250, rabbit

anti-myc-tag (CellSignaling) at 1:200 and a mouse anti-eMHC (Developmental Studies Hybridoma

Bank, University of Iowa, USA) at 1:5. Alexa secondary antibodies (Molecular Probes) were used

at a 1:1000 dilution. For analysis that included EdU detection, EdU staining was completed prior

to antibody staining using the Click-iT EdU Alexa fluor 488 detection kit (Molecular Probes)

following manufacturer protocols. Sections were incubated with 1 ug/mL DAPI for 10 min at room

temperature then mounted in Mowiol supplemented with DABCO (Sigma-Aldrich) or ProLong

Gold (Thermo) as an anti-fade agent.

4.5.6 Immunocytochemistry

Fixed cells or fibers were then permeabilized with 0.25% Triton-X100 (Sigma) in PBS con-

taining 2% bovine serum albumin (Sigma) for 60 min at RT. Incubation with primary antibody

occurred at 4°C overnight followed by incubation with secondary antibody at room temperature

(RT) for 1hr. Primary antibodies included mouse anti-Pax7 (Developmental Studies Hybridoma

Bank, University of Iowa, USA) at 1:750, rabbit anti-myc-tag (CellSignaling) at 1:400, chicken

anti-syndecan4 (Developmental Studies Hybridoma Bank, University of Iowa, USA) at 1:1000 and

a mouse anti-phosphoFGFR1 (CellSignaling) at 1:100, phospho H3 (Millipore Sigma) at 1:500, myog

F5D (abcam) 1:1, emhc F1.652 (DSHB) at 1:5. Alexa secondary antibodies (Molecular Probes)

were used at a 1:1000 dilution. For analysis that included EdU detection, EdU staining was com-

pleted prior to antibody staining using the Click-iT EdU Alexa fluor 488 detection kit (Molecular

Probes) following manufacturer protocols. Cells were incubated with 1 ug/mL DAPI for 10 min
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at room temperature then mounted in Mowiol supplemented with DABCO (Sigma-Aldrich) or

ProLong Gold (Thermo) as an anti-fade agent.

4.5.7 Microscopy and image analyses

Images were captured on a Nikon inverted spinning disk confocal microscope or an invereted

fluorescence scanner microscope (Olympus IX83). Objectives used on the Nikon were: 10x/o.45NA

Plan Apo, 20x/0.75NA Plan Apo and 40x/0.95 Plan Apo. Confocal stacks were projected as

maximum intensity images for each channel and merged into a single image. Brightness and contrast

were adjusted for the entire image as necessary. Both muscle stem cell numbers and average

myofiber diameter were counted manually using Fiji ImageJ. Images were processed using Fiji

ImageJ and the analysis package myosoft [175]. Primers for caFGFR1 detection by PCR FGFR3

TMD – FGFR1 TKD spanning primers: FR3-FR1-FW: AGCTACGGGGTGGTCTTCTT FR3-

FR1-RV: AACCAGGAGAACCCCAGAGT

4.5.8 Software Packages

- Cellranger Software Suite/3.0.1 - FastQC 0.11.8 - R 4.1.1 - Seurat 4.1.1 - SoupX 1.5.2

4.5.9 Quality control, read alignment, and expression quantification

To assess the quality of Fastq files from sequencing, FastQC was used, evaluating depth and

quality of each replicate. Cellranger was then used to process Fastq files and aggregate techni-

cal replicates, creating gene-count matrices for each sequencing experiment. For transcriptome

alignment of the snRNA-seq datasets, a custom pre-mRNA mm10 reference package was used as

previously described for nuclei [20, 147]. For the scRNA-seq experiments, the recommended refer-

ence package was used [16].
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4.5.10 Accounting for experimental noise and doublets

Cellranger-aligned feature matrices were then loaded into R using the load10X() function

from SoupX. Ambient RNA contamination was predicted using default settings of autoEstCont()

and counts were normalized to an estimated noise parameter using adjustcounts(). In Seurat,

doublets and debris were removed as per their recommended metrics. Cells or nuclei expressing

greater than 2,500 or less than 200 features were removed.

4.5.11 Normalization, dimensional reduction, and nuclear clustering

The tutorial provided by the Mayaan lab was used to guide data normalization (satijalab.

org/seurat/articles/pbmc3k_tutorial). Mitochondria and low-quality nuclei were removed.

Seurat objects were then passed through NormalizeData(), FindVariableFeatures(), ScaleData()

to scale and log normalize gene counts within each sample. Data were then integrated using

the FindIntegrationAnchors() and IntegrateData() functions in Seurat using the reciprocal PCA

(rPCA) algorithim.

While performing dimensional reduction of the integrated Seurat object using UMAP and

clustering using the shared nearest neighbor (SNN) modularity optimization based clustering al-

gorithm, adjusting the minimum number of neighbors, minimum distance, and resolution param-

eters to achieve adequate separation of nuclear clusters [148]. Identification of nuclear clusters

was done manually, using differential gene expression from the FindMarkers() function between

clusters combined with manual literature curation. The Myoatlas database and webtool (re-

search.cchmc.org/myoatlas/) was of particular help in identifying clusters of nuclei [20].

4.5.12 Comparison to Kimmel, et. al 2021

To compare the recombined and non-recombined clusters of MuSCs to existing data, data

from [85] were downloaded from GEO number and processed identically as described above.

satijalab.org/seurat/articles/pbmc3k_tutorial
satijalab.org/seurat/articles/pbmc3k_tutorial
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4.5.13 Differential expression tests

Differential gene expression was assessed by the Wilcoxon Rank Sum Test in the Seurat

FindMarkers() function. Genes were assessed as significant with an adjusted p-value ¡ 0.05. GO

analyses identifying differentially expressed genes were conducted using Panther [129, 149]. A

background gene set was used comprising all genes expressed in myogenic nuclei detected from

sequencing. GO Biological Processes Complete hierarchy was used to organize results. Example

categories in figures were chosen as contained within ranked clusters.



Chapter 5

Discussion

Skeletal muscle health is critical for human well-being. As individuals age, skeletal muscle

function and regenerative capacity deteriorates, disrupting the lives of elderly individuals [4–6,70].

Disruptions to MuSC function are considered a fundamental driver of aging-associated skeletal

muscle decline [8,76,80,104], yet the precise mechanisms for how MuSC dysfunctions contribute to

changes in mature muscle function in aging is not fully understood [176, 177]. Additionally, while

MuSC populations exist within functionally-defined subsets with distinct proliferative behaviors,

how these subpopulations are impacted by aging is not clear. Contributing to this incomplete

understanding of the relationship between MuSC biology and age-associated skeletal muscle decline

is the complex nature of aging, where fundamental cellular processes, such as transcription and cell

fate determination, are disrupted globally and impact each other in complex and synergistic ways,

such that unraveling the causes versus the effects of aging is exceedingly difficult [6, 67–69,89,178,

179]. Because the changes that occur with aging are so pervasive, only systematically assessing

changes to myogenic processes will reveal underlying drivers of skeletal muscle aging. Thus, I

applied transcriptomic and other population-level analyses to expose various fundamental elements

of aging-associated changes to MuSC biology and reduced regenerative capacity, and how these

changes may contribute to the overall decline of skeletal muscle during aging.

To thoroughly explore the fundamental drivers of aging requires strategies capable of assessing

biological processes holistically, rather than on the level of individual genes or pathways. One

of the most effective ways to accomplish this is single-cell transcriptomics, which captures global
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transcriptional states of single cells [180,181]. To compare the transcriptional states of regenerating

myogenic nuclei from young and aged mice, they must first be oriented so that nuclei that at

comparable stages of myogeneis are being directly compared. To accomplish this, I integrated

single-nuclear transcriptomic with in-depth pseudotime analysis to identify temporal changes to

gene expression during myogenesis in aged mice. Through this analysis, I revealed that coordination

of myogenic gene expression networks is disrupted during regeneration in aged mice. While previous

studies support straightforward delays in the activation of myogenic transcriptional networks [74,85,

86], my findings support much more complex and nuanced aging-associated temporal disruptions to

myogenic gene expression. I uncovered that genes with disrupted pseudotime expression dynamics

comprised distinct transcriptional networks identified by enriched co-expression of TFs and shared

pseudotime expression patterns. Additionally, I reveal through a novel application of the Dynamic

Time-Warping algorithm that mis-coordination of gene expression networks in aged mice worsens

as MuSCs and progenitors proliferate, fuse, and mature as myonuclei, similar to a propagating

wave of temporally disrupted gene expression during regeneration in aged mice. My work adds to a

growing body of evidence that temporal disruption of gene expression dynamics is a critical driver of

aging phenotypes in skeletal muscle, as well as possibly within other tissues and diseases [6,85,86].

While further studies are required to unravel the mechanisms of altered gene expression dynamics

in skeletal muscle, my work builds on an important perspective that will help guide future research

into the phenomenon of temporally disrupted gene expression in aging.

The extent of cell fate heterogeneity among MuSCs is not well understood, and the functional

consequences of different distinct MuSC behaviors, and how they are affected in aging, has not been

sufficiently explored. In aging, skeletal muscle is more easily injured, and thus is chronically existing

within a regenerative state [182, 183]. Clonal diversity and maintenance of MuSC subpopulations

may be critical for myonuclear maturation and reestablishment of critical anatomical structures

after muscle regeneration is complete, which if lost or disrupted in aging could help explain asso-

ciated muscle decline. I analyzed single-cell frequency distributions of MuSCs and their progeny

generated from a novel barcode lineage tracing conducted in young and aged mice during regener-
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ation. I uncovered evidence supporting at least two types of MuSC lineages exhibiting strikingly

distinct proliferative dynamics, where one type is exceedingly rare, the other is associated with

a significant majority of MuSCs. I detected that this extremely minor subpopulation of MuSCs

proceeds through significantly more divisions than the bulk population, producing thousands of

progeny compared to the average MuSC lineage size of ∼1-2. When I asked how these population

dynamics differ during regeneration in aged mice, I uncovered a reduction of these high expand-

ing MuSCs compared to young mice, suggesting either the processes of cell expansion is awry in

aged mice, or the necessary pruning down of these large lineages once regeneration is complete

in order to reestablish population balance, is dysregulated in aging. This work is preliminary in

many regards, leaving significant holes in our understanding of sources of experimental bias and

the biological significance of high dividing MuSCs. Nevertheless, my findings provide a previously

unattainable glimpse into MuSC population dynamics during regeneration in aged mice. Moving

forward, the novel barcoding technique developed by the our group can be extended to other adult

stem cell populations to identify potentially similar aging and disease-associated changes in stem

cell population dynamics.

Chapter 4 of my dissertation includes a study where a genetic perturbation to MuSCs in

aged mice recovers aspects of their function relative to young mice, however, unexpectedly this

was insufficient to detectably affect muscle function. This finding is critical for contextualizing the

broader significance of my dissertation work. While I describe complex defects in MuSC transcrip-

tional trajectories and population dynamics during regeneration in Chapter 2 and Chapter 3, it

is important to consider the deeply intertwined physiological systems that govern skeletal muscle

function and decline in aging. In fact, the findings provided in Chapter 4 suggest that, at least to

some degree, the changes to MuSCs described in Chapter 2 and Chapter 3 are downstream effects

of more widespread disruptions to organismal and tissue functions in aging. Thus, the results com-

prising Chapter 4 reinforce the need for holistic approaches when studying the underlying drivers

of aging, ensuring anything less than such methodologies will provide only a fragmented picture of

the complex changes that occur as organisms age. Thus, while my work offers significant insights
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into the fundamental drivers of skeletal muscle aging, future studies are required to unravel the

specific mechanisms that when disrupted lead to the observed changes.

Future Directions

Throughout this thesis, I’ve described previously unresolved features of skeletal muscle re-

generation in aged mice including propagation of mis-timed gene expression, defects in proliferative

dynamics, and the role of extrinsic factors in affecting MuSC function. However, in doing so, my

work has simultaneously generated new questions regarding the mechanisms of these observed dis-

ruptions. Rather than an exhaustive exploration of these mechanisms, my work offers perspectives

that align with established paradigms of MuSC biology and aging, as well as those that will be

considered more controversial by researchers in the field. To delve deeper and comprehensively

evaluate the full extent and implications of these perspectives in terms of muscle biology, as well

as the process of aging more broadly, warrants further investigations.

My analysis of barcode lineage tracing revealed a small subset of MuSCs proceed through

a strikingly disproportionate number of cell divisions, yet the role and consequences of this minor

subpopulation is not clear. The consideration that some MuSCs proceed through significantly more

divisions than the average MuSC challenges many of the fields’ assumptions about how generation

of myonuclei and MuSCs during and after regeneration is accomplished. Moving forward, exper-

iments to further explore the cell fates of high dividing MuSCs (whether they are predominantly

myonuclei or MuSCs) are critical. This will be accomplished through additional barcoding ex-

periments currently being conducted by our group where mice at earlier time points after muscle

injury (3 dpi, 5 dpi, 7 dpi, 10 dpi, 14 dpi, 20 dpi) are evaluated. Including additional time points,

combined with EdU labeling revealing the time windows when different classes of myogenic progeny

are being produced, will be instrumental in helping narrow down the specific myogenic fates, and

biological significance, of high dividing MuSCs.

Additionally, modifying this barcoding strategy to acquire transcriptomic information as well

as cell division quantification, a long-term goal of our group, will be significant for unraveling the
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features of high dividing MuSCs that distinguish them from the bulk population. Are high dividing

MuSCs intrinsically distinct from other MuSCs, or do they acquire the specialized transcriptional

states conferring their capacity to expand disproportionately only upon injury and environmental

stimuli? What are the transcriptional landscapes that drive some MuSCs to go through large

numbers of divisions, while others do not? These are all questions that can be answered through

these lines of experimentation.

While identification of high dividing MuSCs was surprising given current understandings

of MuSC biology, muscle regeneration, aging, and stem cell biology broadly, instead my results

obtained from analysis of pseudotime trajectories of myogenic differentiation in young and aged mice

builds on previous studies identifying temporal changes to gene expression during differentiation

of MuSCs isolated from aged mice. Expanding on these previous studies [74, 85, 86], my research

highlights the pervasive nature of mis-timed gene expression during muscle regeneration in aged

mice, as well as provides potent evidence that temporal aberrations propagate from MuSCs and

progenitors into mature myonuclei, contributing to regenerative and functional decline in aged

skeletal muscle.

Nevertheless, open questions still remain regarding the underlying causes of these tempo-

ral aberrations. What are the fundamental drivers of mis-timed gene expression during muscle

regeneration in aged mice? Could a sequence of stochastic changes in the transcriptional land-

scapes and chromatin organization in aged mouse myogenic progenitors result in promiscuous tran-

scription that disrupts gene expression timing broadly? Alternatively, do specific mutations in

transcriptional regulators impede their function and their ability to maintain appropriate tempo-

ral regulation of transcription? Or maybe the transcriptional mechanisms in MuSCs themselves

remain relatively unperturbed, while aging-specific changes to the intricate extracellular signals

generated from non-myogenic cells types orchestrating MuSC and myogenic progenitor transitions

during regeneration are what drive mis-timed myogenic gene network expression? To explore these

questions further requires explicitly interrogating the mechanisms of mis-timed gene expression in

aged mice. Firstly, experiments such as ChIP-seq of TFs identified as enriched among genes with
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disrupted pseudotime expression would be critical to identifying downstream regulatory networks

more directly. These experiments combined with ATAC-seq, where global chromatin organization

of MuSCs and progenitors from aged mice are evaluated, would begin to unravel the transcriptional

mechanisms associated with mis-timed gene expression. Additionally, further experiments where

TF and chromatin modifying proteins are genetically perturbed and conditionally expressed dur-

ing regeneration would help illuminate the complex mechanisms of how mis-timed gene expression

propagates through myogenic transcriptional networks. If the timing of expression, rather than

transcript levels, of TF expression is modulated in young mouse regeneration, does this elicit an

phenotype similar to regeneration in aged mice? And vise versa, if TF expression is activated at

times in aged mice that they are activated in young mice, is this sufficient to rescue regenerative

phenotypes in aged mice? These last experiments also can potentially help explain the findings

that recovery of myogenic signaling is insufficient to rejuvenate aged skeletal muscle, by revealing

the, to at least some degree, extrinsic factors that may drive mis-timed gene expression in aged

mice.

Thus, as with all research in molecular biology, my findings have both advanced the fields’

knowledge, as well as sparked the need for future exploration. It is only through the pursuit of these

unresolved questions and the continuous efforts of the scientific community that we can deepen our

understanding of the intricate processes governing organismal aging and the associated regenerative

and functional decline of skeletal muscle.
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to assessing cellular senescence in vitro and in vivo. The FEBS Journal, 288(1):56–80, 2021.

[164] Dominik Saul, Robyn Laura Kosinsky, Elizabeth J. Atkinson, Madison L. Doolittle,
Xu Zhang, Nathan K. LeBrasseur, Robert J. Pignolo, Paul D. Robbins, Laura J. Niedern-
hofer, Yuji Ikeno, Diana Jurk, João F. Passos, LaTonya J. Hickson, Ailing Xue, David G.
Monroe, Tamara Tchkonia, James L. Kirkland, Joshua N. Farr, and Sundeep Khosla. A new
gene set identifies senescent cells and predicts senescence-associated pathways across tissues.
Nature Communications, 13(1):4827, 8 2022. number: 1 publisher: Nature Publishing Group.

[165] Tom H. Cheung and Thomas A. Rando. Molecular regulation of stem cell quiescence. Nature
reviews. Molecular cell biology, 14(6):10.1038/nrm3591, 6 2013. PMID: 23698583 PMCID:
PMC3808888.

[166] Jacob C. Kimmel, Lolita Penland, Nimrod D. Rubinstein, David G. Hendrickson, David R.
Kelley, and Adam Z. Rosenthal. Murine single-cell rna-seq reveals cell-identity- and tissue-
specific trajectories of aging. Genome Research, 29(12):2088–2103, 12 2019.

[167] Paul D. Thomas, Dustin Ebert, Anushya Muruganujan, Tremayne Mushayahama, Laurent-
Philippe Albou, and Huaiyu Mi. Panther: Making genome-scale phylogenetics accessible to
all. Protein Science, 31(1):8–22, 2022.

[168] Huaiyu Mi, Anushya Muruganujan, and Paul D. Thomas. Panther in 2013: modeling the
evolution of gene function, and other gene attributes, in the context of phylogenetic trees.
Nucleic Acids Research, 41(Database issue):D377–386, 1 2013. PMID: 23193289 PMCID:
PMC3531194.

[169] Mayank Verma, Yoko Asakura, Bhavani Sai Rohit Murakonda, Thomas Pengo, Claire La-
troche, Benedicte Chazaud, Linda K. McLoon, and Atsushi Asakura. Muscle satellite cell
cross-talk with a vascular niche maintains quiescence via vegf and notch signaling. Cell Stem
Cell, 23(4):530–543.e9, 10 2018. PMID: 30290177 PMCID: PMC6178221.

[170] Cory M. Dungan, Kevin A. Murach, Christopher J. Zdunek, Zuo Jian Tang, Georgia L.
VonLehmden, Camille R. Brightwell, Zachary Hettinger, Davis A. Englund, Zheng Liu,



123

Christopher S. Fry, Antonio Filareto, Michael Franti, and Charlotte A. Peterson. Deletion
of sa β-gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell,
n/a(n/a):e13528, 2022.

[171] Lei Liu, Xianlin Yue, Zewei Sun, William S. Hambright, Jianming Wei, Ying Li, Polina Matre,
Yan Cui, Zhihui Wang, George Rodney, Johnny Huard, Paul D. Robbins, and Xiaodong Mu.
Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics
rescues the function of muscle stem cells. Journal of Cachexia, Sarcopenia and Muscle,
13(6):3137–3148, 2022.

[172] Lei Liu, Xianlin Yue, Zewei Sun, William S. Hambright, Qi Feng, Yan Cui, Johnny Huard,
Paul D. Robbins, Zhihui Wang, and Xiaodong Mu. Senolytic elimination of senescent
macrophages restores muscle stem cell function in severely dystrophic muscle. Aging,
14(19):7650–7661, 9 2022. PMID: 36084954.

[173] Alexandra C Keefe, Jennifer A Lawson, Steven D Flygare, Zachary D Fox, Mary P Co-
lasanto, Sam J Mathew, Mark Yandell, and Gabrielle Kardon. Muscle stem cells contribute
to myofibres in sedentary adult mice. Nat Commun, 6:7087, 2015.

[174] Thomas O. Vogler, Katherine E. Gadek, Adam B. Cadwallader, Tiffany L. Elston, and
Bradley B. Olwin. Isolation, culture, functional assays, and immunofluorescence of myofiber-
associated satellite cells. Methods in Molecular Biology (Clifton, N.J.), 1460:141–162, 2016.
PMID: 27492171.

[175] Lucas Encarnacion-Rivera, Steven Foltz, H. Criss Hartzell, and Hyojung Choo. Myosoft:
An automated muscle histology analysis tool using machine learning algorithm utilizing
fiji/imagej software. PLOS ONE, 15(3):e0229041, 3 2020. publisher: Public Library of
Science.

[176] Christopher S Fry, Jonah D Lee, Jyothi Mula, Tyler J Kirby, Janna R Jackson, Fujun Liu,
Lin Yang, Christopher L Mendias, Esther E Dupont-Versteegden, John J McCarthy, et al.
Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative
capacity without affecting sarcopenia. Nature medicine, 21(1):76–80, 2015.

[177] John J McCarthy, Jyothi Mula, Mitsunori Miyazaki, Rod Erfani, Kelcye Garrison, Am-
reen B Farooqui, Ratchakrit Srikuea, Benjamin A Lawson, Barry Grimes, Charles Keller,
et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development,
138(17):3657–3666, 2011.

[178] Cédric Debès, Antonios Papadakis, Sebastian Grönke, Özlem Karalay, Luke S Tain, Athanasia
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