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 Humanity is still at the early stages of understanding the highly complex molecular 

mechanisms of neurodegeneration. Along with the mechanisms, how neurodegeneration starts 

remains largely unknown for many of these diseases. My research focuses on using RNA-

sequencing data to understand these mechanisms as well as gain insights into how these 

diseases might form. 

 

 We first found that with heat shock, Caenorhabditis elegans worms have nuclear double 

stranded RNA (dsRNA) foci that appear similar to foci in worms with a knockout of tdp-1, a 

worm homolog of the Amyotrophic Lateral Sclerosis (ALS)-related protein TDP-43. Next, we 

performed RNA-sequencing of immunoprecipitated dsRNA and noticed that transcription of 

dsRNA is enriched downstream of some genes. We then created a novel algorithm called 

Dogcatcher which can capture and quantify downstream of gene regions (DoG) genome-wide. 

We then biologically validate a DoG identified by Dogcatcher using fluorescence imaging. 
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 We next developed an algorithm called Mystery Miner that uses RNA-seq data to look for 

the presence of pathogens that might contribute to neurodegeneration. Specifically, we take 

often discarded non-host reads from RNA-sequencing data and identify microbes present in 

samples as well as quantify microbes between groups. We then apply Mystery Miner to our 

novel ALS dataset that consists of over 120 patients from four patient classes (three ALS 

related, one control). Although we find no convincing evidence for the presence of microbes or 

a set of microbes that might contribute to neurodegeneration, we do find and biologically 

confirm the presence of a novel RNA-dependent RNA polymerase-like sequence present in our 

dataset. Additionally, we apply Mystery Miner to other ALS related datasets in the field and 

perform a meta-analysis looking for any microbes that might contribute to ALS. Despite 

multiple types of analysis, we find no convincing evidence for the presence of a microbe or set 

of microbes in ALS related patient classes for any of the datasets analyzed. 

 

 Finally, I create an algorithm called MaDDoG that segments DoGs by partitioning loci at 

points of change (using the mean count) with subsequent quantification of segments between 

groups of samples. I first generate synthetic data as a proof of concept for MaDDoG, then apply 

it genome-wide on a real dataset. I then highlight the many applications of MaDDoG such as 

distinguishing between genes that have truncated or absent control DoGs, identifying regions 

at the end of DoGs that are likely transcriptional noise, its flexibility with regards to data with 

high or low variance of mean count, and look for intron retention or alternative exon usage in 

genic regions. 
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 I hope any biological insights and algorithms created in my research will help patients 

suffering from neurodegeneration. Additionally, my algorithms can be applied outside of 

neurodegeneration and I hope that researchers from highly diverse fields will use my 

algorithms to gain further insights into many disease processes. 
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I.  Introduction 

Summary 

 

Sequencing technologies have drastically changed how we view biology with regards to 

development and disease. We are just at the start of the personalized medicine revolution and 

sequencing technologies will be a key factor in tailoring treatments for individuals. These 

technologies are becoming cheaper every day which brings up certain challenges such as how 

to process, store, and utilize the information in the most effective manner. Along with 

personalized medicine, these tools have become vital in uncovering mechanisms of disease, 

development, and the complex underpinnings of genetic regulation. As we develop new 

algorithms to process the data, we also uncover new information about the true biological 

processes that are occurring. The Christopher D. Link lab is primarily focused on 

neurodegenerative diseases [Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS)], 

and it is through this lens that we ask questions and then develop tools to answer these 

questions. With that in mind, this thesis focuses on two areas of research (downstream of gene 

transcription and bioprospecting), the application of three algorithms to these areas, and 

additional research of biological merit that is too small to create a stand-alone publication. As 

background, I will first (Chapter II) cover sequencing technology and common sequencing 

applications, provide a brief overview of neurodegeneration with a more in-depth look at ALS 

and Alzheimer’s disease, and then provide background information on downstream of gene 

transcription and bioprospecting. Each subsequent chapter (Chapter III-V) will focus on a novel 
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bioinformatic algorithm and the biological insights gained from its application. We will then end 

(Chapter VII) with how this work compares to current research and potential 

applications/improvements that can be pursued for future research along with additional 

research conducted (Chapter VII). 
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II. Background 

 
Common sequencing technology and bioinformatic applications 

 
Introduction 

Every organism must use RNA or DNA in some capacity. For example, some viruses 

insert their DNA into the host genome and hijack a host organisms’ cellular machinery for 

replication. For those of us unlucky enough to reproduce by other means, maintaining proper 

cellular dynamics remains essential for life. In general, DNA is transcribed into RNA, and RNA is 

translated into protein. Every cellular process is performed by proteins and certain RNAs. In 

general, capturing and sequencing RNAs in the cell provides expression levels that are an 

indirect (and often poor) measurement for protein levels. Often, the goal is to find differential 

gene expression (DGE) by examining how the levels of coding RNAs change after perturbations 

(such as drug exposure, differentiation, or altered cellular environmental conditions) or 

between disease conditions.  

 

Methods for detecting DGE have changed significantly over the past five decades. 

Developed in the 70’s, one of the earliest methods for DGE detection is the northern blot. This 

method consists of running RNA on a gel to reduce secondary structure, hybridizing labelled 

probes to the RNA of interest, and quantifying readouts from the probes1. In the 80’s, 

techniques such as quantitative polymerase chain reaction (qPCR) allowed fast and accurate 

readouts of RNA levels without the need for setting up gels. Briefly, qPCR for quantifying RNA 
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levels consists reverse transcribing RNA to DNA, designing primers to the region of interest, and 

measuring the amounts of DNA produced after a set number of amplifications (or more 

accurately by measuring the incorporation of fluorophores in real time)2. In the mid 90’s, 

hybridization-based microarrays enabled a more complete view of the transcriptome by 

obtaining readouts for thousands of genes at a time. Microarrays suffered from several 

problems, including printing each array, reliance upon existing knowledge of genomic 

sequences, limited dynamic range of detection due to background or saturation of signals, and 

complex normalization methods when comparing DGE between experiments3. Despite these 

limitations, microarrays are heavily utilized in clinical settings because of their long history and 

known properties. Developed in the mid 2000’s4, RNA sequencing (RNA-seq) has become an 

invaluable tool for biologists studying genomic function, organismal development, and disease 

processes. RNA-seq has risen to become the most popular expression assay and has largely 

overcome the challenges of microarrays and offers additional benefits including detection of 

lowly-expressed genes5, alternative splice variants6, single nucleotide variants7, as well as 

illuminating the intricacies of gene-expression regulation via non-coding RNAs8–10 (Figure II-1)11.  
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Figure II-1: Transcriptomic technology over time 

Line plot of published studies over time (1990-2016) for various key words from 
Pubmed. RNA-seq technology (black), RNA microarray (red), expressed sequence tag (blue), cap 
analysis (yellow). Figure from Lowe et al., 2017. 

 

For a typical DGE analysis, this consists of RNA extraction from cells or tissues, library 

enrichment or depletion (common examples include polyA selection, size filtering, or depletion 

of ribosomal RNAs), conversion of RNA to complementary DNA (cDNA) by reverse transcription, 

Sequencing adapter ligation to the ends of the cDNA fragments, amplification by Polymerase 

chain reaction (PCR), creating “reads” by sequencing, and subsequent computational analysis 

(Figure II-2 shows overview of a typical RNA-seq experiment).  

 

When moving to computational analysis, these collective molecular decisions converge 

to produce an output file of sequencing reads of a particular length, numbering in the 

thousands to billions. Each read has a set of per position quality scores that can be inferred as 
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the confidence in the base call. The choice of RNA isolation method, size selection, and other 

steps can have tremendous impact on the raw data that is produced. Care must be taken to 

perform these steps successfully to reduce bias and noise that affect downstream analysis, 

which may reveal true biological insights. After obtaining files containing reads, a swath of 

algorithms can be used to transform raw reads into differential expression levels of genes. 

Briefly, this consists of quality checking and trimming reads, mapping reads to a genome, and 

quantifying reads over specific genomic regions (genes, intergenic regions, etc.). 
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Figure II-2: Overview of a typical RNA-seq experiment 

First, RNA is extracted from cells or tissues. Next, RNA is enriched by polyA selection, 
depleted of ribosomal RNAs, and/or size selected. RNA is then converted to complementary 
DNA (cDNA) by reverse transcription. Sequencing adapters are then ligated to the ends of the 
cDNA fragments, amplified by PCR and sequenced. (Figure from Kukurba 2015)12. 
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 There are well over 100 RNA-seq protocols that have been developed13,  with benefits 

and drawbacks to each approach. Highlights include using nascent sequencing technologies to 

capture RNAs being actively transcribed but lacking the capture of steady state RNAs14, 

sequencing the RNA-RNA interactome using PARIS or SPLASH but receiving no information on 

gene expression15, and exploring gene expression levels at the single-cell level using single-cell 

sequencing but suffering from high technical variation between samples16.  Aside from these 

examples, there are a multitude of methods that can be employed to maximize the use of RNA 

seq data. Covering every method would be impossible, and instead we will focus on methods 

used in this thesis including measuring differential gene expression, measuring alternative 

isoforms and quantifying differential splicing, mapping reads to repetitive regions for 

differential expression of repetitive elements, identifying and quantifying regions of RNA that 

have been edited, assembling and quantifying reads that do not match to the host genome to 

look for the identity of pathogens, and identifying and quantifying regions downstream of 

genes due to aberrant transcription termination. 

 

Differential gene expression 

Once reads have been mapped to regions of interest (usually genes), samples are 

normalized by library size, and a statistical test is usually applied to test if a given gene has a 

significant difference in read counts for observed counts vs expected counts (due to random 

variation). A common technique to test DE genes is to make the assumption that read counts 

follow a multinomial distribution and are independently sampled from a population with a 
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given fixed fraction of genes17. This multinomial was initially approximated using the Poisson 

distribution, which is a unique one parameter distribution where the variance equals the mean. 

The main issue with using the Poisson distribution is that it predicts smaller variations than 

what is seen in the data and does not control type-I error (probability of false discoveries) 

well18. In simpler terms, the observed variance in the count data is usually greater than the 

mean (“overdispersion”) and the Poisson is not capable of modeling this. To address the 

overdispersion problem, the negative binomial (NB) distribution (equivalent to the gamma-

Poisson distribution) is used and because it has a parameter for mean as well as dispersion, it is 

able to correctly account for overdispersion19 (Fig. II-3). For large sample sizes it is easy to 

accurately estimate the dispersion parameter for each gene, in RNA-seq it is common to have 

sample      sizes as low as two or three replicates leading to noisy estimates of the dispersion 

parameter. One solution to overcoming noisy estimates from low sample size is to assume 

genes of similar average expression strength have similar dispersion (e.g., borrowing 

information across genes) and shrink the dispersion to reduce the noise. For example, in 

DESeq21, this is done by first estimating gene-wise dispersion (using maximum likelihood) and 

fitting a smooth curve which represents the expected dispersion values. Next, gene-wise 

dispersion estimates are shrunken toward the values on the curve using an empirical Bayes 

approach which determines the amount of shrinkage based on an estimate of how close true 

dispersion values tend to be to the fit and the degrees of freedom (shrinkage decreases with 

increased sample amount)20 (Figure II-4)20. In addition to shrinking dispersion, it is often useful 

to shrink Log Fold Changes (LFC) in count data because it has inherent heteroskedasticity 

(variance of LFCs depend on the mean count). To use DESeq2 as another example, it again 
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applies an empirical Bayes procedure by first obtaining maximum-likelihood estimates (MLEs) 

of the LFCs and then fitting a zero-centered normal distribution to the observed distribution of 

MLEs over all genes. Next, it uses the distribution as a prior on the LFCs and computes 

Maximum a posteriori (MAP) estimates as the final estimate of the LFC. Finally, once a model is 

fit for each gene it is possible to run a statistical test for a significant change in expression. 

DESeq1 and edgeR2 use a variation of the Fisher exact test adopted for the NB distribution 

(Wald test) that can calculate an exact P-value by conditioning on the total sum to determine if 

the probability of observing the counts is extreme or more extreme than what is obtained21. 

The P-values are then adjusted (P-adj) for multiple hypothesis testing to control the false 

discovery rate usually using the procedure from Benjamini and Hochberg22 . Lastly, a chosen 

threshold is used to filter genes for significance based on the P-adj value (usually 0.01 or 0.05). 

Despite the popularity of DESeq2 and edgeR, the choice of which algorithm to use is still open-

ended as comparisons show that no method performs optimally in all circumstances23,24. In 

addition, methods are being developed that improve the negative binomial25 or do not assume 

a negative binomial distribution (instead use a normal distribution26 or non-parametric 

distributions27). 
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Figure II-3: Poisson vs Negative Binomial 

Plot of mean expression of genes compared to pooled gene-level variance. It is clear the 
Negative Binomial distribution (blue line) fits the observed values better than the Poisson 
distribution (black line). This gives intuition to why an extra dispersion parameter in the NB is 
helpful to model the often-observed fact that gene-level variance is higher than the mean gene 
expression for larger genes (“overdispersion”). Figure from Bottomly et al., 201228. 

 

 
Figure II-4: Dispersion shrinking in DESeq2 

Plot of dispersion estimate [ i.e. parameter in the negative binomial to estimate gene 
variability (Y-axis)] vs mean of normalized counts (X-axis). Maximum likelihood estimates (MLE) 
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are obtained using each gene’s data (black dots). A curve is then fit to this data to capture the 
overall trend of the dispersion-mean dependence (red curve). This fit is then used as a prior 
mean for a second estimation round which gives the Maximum a posteriori (MAP) estimates of 
dispersion (arrowheads). Black points circled in blue are dispersion outliers and not shrunk 
toward the prior (red curve). Figure from Love et al., 201420. 

 

 

 

 

 

Alternative Splicing 

When sufficient sequencing depth is obtained (40-50 million reads per sample)29, a less 

often employed analysis strategy can look for patterns of isoforms usage for a gene and 

alternative splicing between samples. The majority of protein coding genes in eukaryotes are 

transcribed into precursor mRNA (pre-mRNA) that consists of protein coding regions (exons) 

with non-coding regions that are often removed (introns). Introns contain three important sites 

for splicing, the 5’ splice site (5’SS), branch point (BP), and 3’ splice site (3’SS). The mechanism 

of splicing is highly complex but can be broken down into a two-step phosphoryl transfer 

mechanism (branching and exon ligation) that is catalyzed by the splicesome. The splicesome is 

also highly complex and consists of 5 small nuclear RNAs (snRNAs) and approximately 100 

proteins that assemble denovo on the pre-mRNA whenever splicing occurs30. Alternative 

splicing (AS) is the result of different splice sites being used that results in the production of 
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alternative mature mRNAs31. AS greatly expands the diversity of the transcriptome and 

proteome and is so ubiquitous it is estimated ~95% of multi-exonic genes are alternatively 

spliced in humans32. The five most common types of alternative splicing are alternative 5’SS 

selection, alternative 3’SS, intron retention, and mutually exclusive exon (Fig II-5)33.   

 

 AS has many roles in development and impacts on disease. It has been shown to 

contribute to cell differentiation and lineage determination, tissue maintenance, and organ 

development34. AS patterns change in cells during neuronal lineage development and impact 

neurogenesis, neuronal migration, and synaptogenesis35. In fact, even a simple depletion of the 

splicing factor/RNA-binding protein polypyrimidine tract binding protein 1 (PTBP1) in fibroblasts 

is sufficient to induce trans-differentiation into neurons36. Aside from development, various 

mechanisms can cause splicing errors in humans leading to disease and include (but not limited 

to) a single-nucleotide mistake that results in a frameshift and nonsense mediated decay (NMD) 

of the transcript, the majority of exons (~80%) are small <200bp and can be masked by the 

larger intronic pool, and the fact that splicing occurs co-transcriptionally and is modulated by 

the rate of transcriptional elongation by RNA polymerase II (Pol II) which depends on multiple 

regulatory machineries acting correctly in concert37. While correct AS is important for neuronal 

development, aberrant splicing can cause neuropathological disorders such as frontotemporal 

dementia with parkinsonism linked to chromosome 17 (FTDP-17) which occurs when mutations 

affect splicing in the 10th exon of microtubule-associated binding protein tau (MAPT)38. Aside 

from neurodegeneration, mutations in the splicesome can lead to retinal degenerative 
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disorders and hereditary blindness39, splice site mutations may cause a loss of dystrophin 

function leading to Duchenne muscular dystrophy, and there is a large body of literature 

concerning the interplay of AS with immunotherapy and cancer33. After decades of research 

identifying splicing abnormalities that cause an array of diseases, researchers are beginning to 

see the fruits of their labor as clinical trials are underway that validate therapeutic approaches 

using small molecules and antisense oligonucleotides40,41. 

 

As mentioned above, understanding AS in the context of development and disease 

processes is vital for modern biology and numerous methods exist to categorize and quantify 

AS. RT-qPCR is the standard quantitative technique used to detect differences in known splice 

isoforms but suffers from low throughput, large amounts of RNA needed, and false positives 

due to remaining genomic DNA leftover in the RNA extraction42. Other methods include RETF43, 

Ligation-based PCR44, Raman multiplexing45, and P-RCA46, but these methods all fall short 

compared to RNA-seq due to low throughput or inability to detect splice changes genome wide. 

Algorithms for quantifying AS fall into a few different categories including transcript 

reconstruction methods47,48, light-weight pseudoalignment heuristics that quantify transcript 

abundances49,50, analysis of differential usage of sub-genic features (exons)26,51, and algorithms 

that leverage junction information to infer annotated and novel splicing52–54. Choosing which AS 

algorithm to use remains an open question as a recent cross-comparison using vertebrate data 

found strengths and weaknesses to each approach29.   
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Figure II-5: Common splicing patterns 

This figure depicts the five most common splicing patterns. Exons are colored boxes and 
straight horizontal lines are introns. On the left is pre-mRNA and triangular lines show regions 
where alternative splicing is possible. On the right is the mature (spliced) mRNA. Figure from 
Frankiw et al., 201933. 
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Repetitive elements 

The next often overlooked analysis consists of using reads that map to multiple 

locations in the genome, i.e. repetitive regions. These “multi-mapped” reads make up a large 

proportion (5 to 40%) of total mapped reads and are often ignored upon completion of DGE 

analysis55. These reads were once thought of as “junk”, but with development of better 

algorithms, these reads are now (although still infrequently) being used to answer questions 

relevant to development and disease. Upon the initial sequencing of the human genome one of 

the startling discoveries was that ~55% of the genome was made up of repetitive DNA 

sequences, this figure has since been updated to around two-thirds of the genome56,57. 

 

     These repetitive DNA sequences called repetitive elements (RE) can be characterized 

into five categories (Fig. II-6). The four minor categories account for ~10% of the genome and 

include simple sequence repeats, segmental duplications, tandem repeats and satellite DNA 

sequences, and processed pseudogenes. The last major category are transposable elements 

(TEs) and account for ~45% of genomic DNA58. TEs can be divided based on methods of 

replication into Class I TEs called retrotransposable elements (RTEs) that use a “copy and paste” 

mechanism with an RNA intermediate59 and Class II TEs called DNA transposons that use a “cut 

and paste” mechanism and use a DNA intermediate60. RTEs can be further subdivided into 

Long-Terminal Repeats (LTR) and non-LTRs. LTRs are also known as endogenous retroviruses 

(ERVs), comprise 8% of the human genome56, and are thought to be exogenous viruses that 

integrated into the host germline in the distant past61. Non-LTRs are the only elements believed 
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capable of retrotransposition and consist of Long Interspersed Nuclear Elements (LINEs) or 

Short Interspersed Nuclear Elements (SINEs)62. 

 

 Although the four minor categories have implications in disease and development63–65, a 

large portion of research into REs is focused on TEs due to their increased genomic amount and 

implications in a variety of diseases66. Retrotransposon activity is largely driven by a single 

family of protein-coding (autonomous) LINE elements known as long interspersed element 1 

(L1). Out of the estimate 500,000 copies of L1 in the human genome, the majority are immobile 

(unable to transpose) leaving a small amount of L1s that are mobile. Of these mobile L1s, it has 

been shown in a cell culture assay that      84% of all retrotransposition activity is driven by 6 

“hot” L1s67. L1s have been implicated in autosomal dominant, autosomal recessive, and X-

linked genetic disorders, cancer, and autoimmunity66. In addition to mobilizing its own RNA, the 

L1 retrotransposase can mobilize a variety of other RNAs including a SINE called Alu which is the 

most abundant (by copy number) RTE in the entire genome56. Alus have been shown to 

contribute to neurodegeneration68, obesity69, and mental retardation70. Finally, human 

endogenous retroviruses (HERVs) have been implicated in systemic lupus erythematosus71 and 

multiple sclerosis (MS)72.  

 

The most reliable and informative method to investigate REs genome-wide is with high 

throughput sequencing due in part to how similar a RE analysis is to a DGE analysis. The main 



18 
 

issue to overcome is ambiguity in read assignment due to reads that map to more than one 

location (multi-mapping reads). The first attempts to use multi-mapping reads calculated read 

coverage across the genome by assigning reads proportionally to all matching regions73 or 

assigning them probabilistically to locations based on the local genomic context74. The most 

popular recent algorithms for quantifying REs include salmonTE75 which essentially uses 

Salmon50 and is built for speed, TEtranscripts76 which assigns reads to genes and REs based on 

RE hierarchy, and Repenrich58 which builds indexes of closely related REs and assigns reads to 

subfamilies. Of these algorithms, salmonTE claims to perform better than the others, although 

it did no comparison with the updated Repenrich2 algorithm7.  

 
Figure II-6: Repetitive elements in humans 

Diagram of repetitive elements in humans. Transposable elements can be divided into 
DNA transposons or retrotransposons according to the mechanism of transposition (DNA or 
RNA intermediate). Retrotransposons are the most abundant class in the human genome and 
consist of Long terminal repeats (LTR) and non-LTRs. LTRs include endogenous retroviruses 
(ERVs) and non-LTRs can be divided into SINE (Alu elements) and LINEs (LINE1 elements). Figure 
from Billingsley et al., 201977. 
 
RNA Editing 

Besides controlling the sequence of mRNA by alternative splicing, another method of 

regulation occurs by a post-transcriptional modification, which edits the RNA transcript 
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sequence (RNA editing). RNA editing analysis remains uncommon, although discoveries with 

implications in the fields of immunology as well as using RNA editing in directed therapies have 

sparked recent interest78. In addition, running an RNA expression analysis can be complicated 

due to constantly changing databases of editing sites (if applicable) and underdeveloped 

methods for quantifying RNA editing in specific regions and genome wide. 

 

RNA editing was initially discovered in the late 80’s from work in the trypanosome79 and 

was shortly found to also occur in mammals in a tissue specific manner80. This study showed C-

to-U editing of apolipoprotein B mRNA with the cytidine deaminase APOBEC1 which 

transformed the glutamine codon (CAA) to a stop codon (UAA) producing a truncated protein. 

Aside from C-to-U editing, by far the highest amount of editing is A-to-I conversions81. One 

classic example of A-to-I (Adenosine to Inosine) editing occurs in neurons at position 602 of the 

glutamate receptor 2 (GluR2) mRNA. Inosine (I) is recognized as guanosine (G) by the ribosome 

and transforms the CAG codon for glutamine (Q) to CIG (or CGG) for arginine (R). This change 

makes the GluR2 receptor impermeable to calcium and neutralizes the diffusion of divalent 

cations82 (Fig. II-7)83. 

 The adenosine deaminase acting on RNA (ADAR) gene family catalyzes A-to-I editing. Of 

the three members in the mammalian genome, ADAR1 and ADAR2 are expressed at high levels 

but only ADAR1 contributes to the majority of editing activity84. ADARs preferentially edit long 

double-stranded RNA (dsRNA) duplexes which primarily form from pairs of inverted copies of 

genomic retro-elements (mainly Alus) in introns or untranslated regions (UTRs) of a transcript. 
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In fact, it is estimated that >99% of the millions of editing sites in the human genome are 

located inside Alu repeats85. Endogenous (‘self’) dsRNAs resemble structures found in viruses 

and can trigger the innate immune system by activating melanoma differentiation-associated 

protein 5 (MDA5)86,87. When activated, MDA5 interacts with the mitochondrial antiviral 

signaling protein (MAVS) which triggers the interferon response leading to cell damage in the 

host88. ADAR1 editing of these endogenous dsRNAs can disrupt the base pairing and prevent 

inappropriate activation of MDA588. Additionally, it has been shown in human cells that a 

knock-out of ADAR1 causes hyperactivation of the dsRNA sensor protein kinase RNA-activated 

(PKR or EIF2AK2) resulting in translational shut down and cell death89. Editing is closely tied to 

the immune system and ADAR1 mutations have been linked to autoimmune diseases like 

Aicardi-Goutieres syndrome and systemic lupus erythematosus90,91. In addition to immune 

disorders, RNA editing has been implicated in neurodegenerative diseases92–94, psychological 

disorders95–97, and a multitude of cancers98.  

 

Profiling RNA editing is still a very active area of research and a variety of bioinformatic 

programs have been released99–102. Initial efforts would map RNA-seq data to a reference 

genome and/or transcriptome to first identify single nucleotide variants (SNVs) to filter out 

single nucleotide polymorphisms (SNPs) which required a complete or partial SNP database103–

105. One algorithm called SNP-free RNA editing Identification Toolkit (SPRINT)102, utilizes SNV 

duplets (two consecutive SNV with the same type of variation. i.e., A-to-G and another A-to-G) 

to distinguish RNA editing sites (RES) from SNPs. SPRINT is also able to distinguish hyper-editing 
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sites (extensive A-to-I RES in a genomic region) and has improved performance in identification 

of RES to other algorithms103,106,107. One recent review of SNP-database dependent algorithms 

suggested that most algorithms (GIREMI103, JACUSA108, RES-Scanner109, REDItools101) perform 

similarly and that the most reliable way to obtain high-quality RES is to fine tune input 

parameters100. All of the algorithms mentioned above are only for calling edits, the methods of 

statistically calling differential editing remains a work in progress. A few issues make this 

problem difficult such as low coverage of reads in repeat elements where the majority of 

editing occurs, editing happening in some samples with no editing in others, and the aggressive 

multiple hypothesis correction when considering a large amount of editing locations. In general, 

it has been suggested to avoid testing differential editing with the normal distribution (avoid 

Student’s t-Test), and many studies have applied the non-parametric Mann-Whitney U test 

(non-parametric version of Student’s t-Test)110,111. Briefly, the Mann-Whitney U test is a rank 

test that compares two populations and tests the null hypothesis that the probability is 50% 

that a randomly drawn member of the first population will exceed a member of the second 

population. 
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Figure II-7: C-to-U and A-to-I editing 

Figure depicting two common cytidine and adenosine deaminases. A. APOBEC1 editing 
occurs in the gut and is involved in production of apolipoprotein B. C-to-U editing transforms 
the glutamate to a stop codon and produces a truncated protein. B. A-to-I editing in neurons of 
the glutamate receptor 2 (GluR2) mRNA. Inosine (I) is recognized as guanosine (G) by the 
ribosome and transforms the CAG codon for glutamine (Q) to CIG (or CGG) for arginine (R). This 
change makes the GluR2 receptor impermeable to calcium and neutralizes the diffusion of 
divalent cations. Figure from Christofi et al., 201983. 

 

Conclusion 

 
Given how costly and difficult it is to design and execute an RNA seq study, it behooves 

researchers to make the most of their data and run these often-overlooked algorithms that 

may give true biological insights. Additionally, with the ever-increasing number of studies and 
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torrential amount of public RNA seq data being produced each year, these alternative analyses 

provide opportunities to any entrepreneurial researcher who are conducting meta-analysis 

studies.  Importantly, even when these less commonly utilized RNA-seq analysis techniques are 

deployed (splicing, repeats, editing), gaps remain in our understanding of RNA-seq data.  

Specifically, analysis of RNA-seq data largely depends on existing annotation and therefore 

discovery of novel signals outside of annotated regions (for example, downstream of genes) is 

rarely considered.   Likewise, the reads that fail to map to the genome are typically discarded, 

yet they may contain evidence of infectious agents. My work focuses on these two, largely 

ignored, aspects of RNA-seq analysis – specifically in the context of neurodegenerative disease.  

As such, next I will provide a brief overview of neurodegeneration along with the impact of 

sequencing on the study of the two most relevant neurodegenerative diseases of my research. 

 

Neurodegeneration 

Introduction 

Neurodegenerative diseases (ND) cause progressive loss of cognitive and/or motor 

function and are an ever-increasing burden on patients, families, and communities due to 

increases in life expectancy worldwide112. Cognitive defects occur in AD, frontotemporal 

dementia (FTD), dementia with Lewy bodies (LBD). Motor system defects occur in ALS, 

Huntington’s disease (HD), and Parkinson’s disease (PD). These diseases show diverse clinical 

manifestations and loss of specific neurons and synapses in distinct brain regions (Fig. II-8)113. 

Despite these differences, many neurodegenerative diseases share common mechanisms or 

features such as aggregation of proteins114 or RNA115, neuroinflammation116, alternative 



24 
 

splicing117, somatic mutations118 and variants/loci in genome wide association studies 

(GWAS)119–126. 

 
Figure II-8: Brain regions affected in neurodegenerative diseases 

Diagram of brain regions where loss of specific neurons and synapses contribute to 
pathology. There are both distinct and overlapping regions affected from multiple diseases. 
Cognitive defects occur in Alzheimer’s disease (AD), frontotemporal dementia (FTD), dementia 
with Lewy bodies (LBD). Motor system defects occur in Amyotrophic lateral sclerosis (ALS), 
Huntington’s disease (HD), and Parkinson’s disease (PD). Figure from Gan et al., 2018113. 
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 Connecting genotype to phenotype to clinical diagnosis in neurodegenerative conditions 

can be a highly complex/convoluted process. Initial efforts in the 80’s and 90’s traced the 

genetic cause of HD to a CAG trinucleotide repeat in the gene HTT127. It was soon found that 

mutations in multiple genes can lead to similar clinical entities. For example, mutations in 

amyloid precursor protein (APP), presenilin 1 (PS1), and PS2128 in early onset AD, mutations in 

molecular weight 43 kDA (TDP-43), Superoxide dismutase one (SOD-1), and fused-in sarcoma 

(FUS) in ALS, and mutations in microtubule-associated protein tau (MAPT) and GRN in 

frontotemporal dementia (FTD)129. The inverse is also true as different mutations in a single 

gene can lead to multiple diseases. A prime example is the most common genetic cause of ALS 

and FTD coming from hexanucleotide repeat expansion mutations in intron 1 of C9orf72130,131 

and sometimes it is useful to view these diseases on a spectrum (Fig. III-9)132.  

 
Figure II-9: FTD-ALS spectrum 

 
ALS and FTD are two sides of a broad neurodegenerative disorder with overlapping clinical 
symptoms. Percentages of known mutations that give rise to ALS (red) or FTD (purple) are 
plotted. Figure from Ling et al., 2013132. 
Alzheimer’s disease 

 
Alzheimer’s disease was first characterized by Alois Alzheimer in 1907 when he used the 

then-new silver staining histopathological technique to examine the brain of one of his patients 

and found neuritic plaques, neurofibrillary tangles, and amyloid angiopathy (Fig. II-10)133. The 
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next decades were spent refining psychological studies of AD and was considered a major 

public health issue when epidemiological data found it was the 4th fourth leading cause of 

death in the elderly134. During the 1990’s and 2000’s major genetic risk factors were discovered 

for familial AD including APP, PS1, and PS2 (as mentioned above) although familial AD only 

accounts for 1 to 2% of all cases133. Later, In sporadic late-onset AD the type ε4 allele of the 

gene for apolipoprotein E (APOE4) was identified as a common risk factor135. APOE4 was found 

in 50 to 60% of patients with AD and confers a three-fold risk for one copy and eight-fold risk 

for two copies of the allele136. Currently, a definitive diagnosis of AD requires post-mortem 

evaluation of brain tissue, but strides are being made in diagnosing living patients using 

cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers along with clinical 

criteria137. The causative factors of AD are still not understood and the search for a cure to this 

disease is frustrating as there are dramatically high clinical failure rates and with no drugs 

moving past phase 3 in 2020138. 

 

 One of the hallmark mechanisms of putative AD pathology comes from AD-associated 

amyloid plaques which are mainly composed of the β-amyloid (Aβ) protein. Aβ is produced 

from protease cleavage of APP. Interestingly, the specific physiological function of APP remains 

a mystery139. APP cleavage by γ-secretase can generate varying chain lengths of Aβ including 

Aβ40 and Aβ42 which are the main Aβ peptides of the brain140. Although Aβ40 is more 

abundant in the brain, the aggregation prone Aβ42 is the main component of amyloid plaques 

and has been shown to be neurotoxic141. During pathogenesis, Aβ monomers make Aβ 

aggregates of various unstable oligomers that then form into insoluble fibrillar assemblies of β-
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strand repeats142. Mounting evidence suggests that it is the oligomers that cause toxicity and 

potential mechanisms of action include membrane damage via pore formation, acting as a 

pathogenic ligand to various receptors, and oligomers activating the free radical process leading 

to oxidative stress143. 

 

 In addition to Aβ, human tau (encoded by the MAPT gene) oligomers and fibrils are the 

main components of neurofibrillary tangles (NFT) and have been shown to induce 

neurotoxicity144. Tau can act as a microtubule binding component that promotes 

polymerization and stability of microtubules, localizes to axons to promote axonal transport, 

and is highly expressed in neurons in mammals145,146. Tau has six different isoforms in the 

human brain and is subjected to a multitude of post-translational modifications (PTMs) 

including phosphorylation, lysine-based PTM, and glycosylation which have been implicated in 

AD147–150. To date it is unknown if NFTs cause neurotoxicity, although there is evidence of 

neurotoxicity for tau with aberrant PTMs, soluble tau oligomers, and tau fibrils144. Interestingly 

tau is being pursued as a biomarker for AD and can be detected using exosome isolation in CSF 

and blood in AD patients151.  

 

How tau and Aβ might cause synergistic pathogenesis is heavily debated. No known 

mutations in MAPT have been associated with AD suggesting that Aβ aggregation occurs 

upstream152,153. A positive feedback loop has also been suggested as tau can directly bind Aβ to 

promote Aβ aggregation and Aβ may trigger the transition of tau from a normal to toxic 

state154–156. Some suggest the key may involve immune activation, as it has been shown that Aβ 
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is able to activate several innate immune pathways, incite inflammatory responses, and release 

cytokines such as interleukin-1β157. One example of this from a mouse model of Alzheimer’s 

describes increased tau pathology from upregulation of the interleukin-1β pathway158. 

Although tau is mainly found in neurons, tau deposits have been found in astrocytes of AD 

brains159. Accumulation of tau in astrocytes can alter astrocyte function which induces neuronal 

degeneration through increasing blood brain barrier (BBB) breakdown and expression of low-

molecular weight heat shock proteins160,161. A working model suggests that tau pathogenesis is 

triggered by Aβ in AD, pathogenic tau and Aβ contribute to inflammation, and reactive glial cells 

(astrocytes) further incite the inflammatory response with subsequent neurodegeneration162. 

 

 
Figure II-10: Alois Alzheimer sketches 

Sketches from Alois Alzheimer of histopathological preparations from early and late -
stage neurofibrillary tangle pathology from his 1911 paper. Figure from Bondi et al., 2017133. 
 
Amyotrophic Lateral Sclerosis 

Amyotrophic Lateral sclerosis is a fatal motor neuron disease (MND) that was first 

described in the 1860’s by French neurologist Jean-Martin Charcot and is characterized by 
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progressive loss of upper and lower motor neurons at the spinal and bulbar level163,164. Roughly 

10% of ALS patients have a family history that suggests an autosomal dominant inheritance, 

and this is classified as familial ALS (fALS), with the remaining 90% of patients classified with 

sporadic ALS (sALS) because they have no affected family members165. Studies on ALS primarily 

come from European populations and within these populations four genes (TDP-

43,FUS,SOD1,C9orf72) account for 70% of fALS166. Of these four genes, C9orf72 accounts for up 

to 30-50% of cases in fALS and 7% of sALS (in all populations)165. The cause of ALS is still 

unknown and has been attributed to genetic risk factors (as mentioned above) as well as risk 

factors related to lifestyle and environment such as smoking, type 2 diabetes mellitus, exposure 

to heavy metals, and athletic status167. 

 

 The pathophysiology of ALS is not well understood but hallmarks of the disease include 

aggregation of ubiquitylated proteins in motor neurons. These aggregations are primarily made 

up of TDP-43 and ~97% of cases show TDP-43 proteinopathy which is characterized by 

depletion of TDP-43 in the nucleus and formation of cytoplasmic aggregates leading to both a 

“loss of function” and “gain of function” model166. Mounting evidence suggests pathogenesis 

from inclusions comes from the TDP-43 C-terminal domain (CTD) being highly disordered and 

prion-like, carrying most of the ALS-associated TARDP mutations, and CTD fragments being 

highly cytotoxic and found in ALS-affected brains168,169. TDP-43 has also been implicated in AD 

where aggregates have been found co-localized with NFTs, and a study using      mice found 

TDP-43 and Aβ oligomers were able to cross-seed each other into toxic species170,171. TDP-43 is 
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vital for RNA processing and has roles in transcription, translation, mRNA transport, mRNA 

stabilization, stress granule formation, and alternative splicing172 (Fig. II-11)172. In fact, using 

genome-wide RNA immunoprecipitation (CLIP-seq) it was found that TDP-43 associates with up 

to 30% of the entire transcriptome173. With deletion of tdp-1, the C. elegans ortholog of TDP-

43, it was found to increase the accumulation of dsRNA (in the transcriptome and detected in 

nuclear foci) as well as enhance the frequency of A-to-I editing in worms. Additionally, TDP-43 

was found to limit the formation of dsRNA in human cells174. The mechanisms of how exactly 

TDP-43 limits dsRNA accumulation is still being worked out, but evidence in worms show that 

deletion of tdp-1 dramatically alters the relocalization of heterochromatin-like protein 2 (HPL-

2), the C. elegans ortholog of heterochromatin protein 1 (HP1). Indeed, TDP-1 and HPL-2 were 

both co-immunoprecipitated in worms and it is thought that TDP-1 recruits HPL-2 co-

transcriptionally to repress repetitive element transcription (a major source of dsRNA)175. Due 

to TDP-43’s complexity of functions, current challenges remain identifying disease-relevant RNA 

interactions, pathways impacted from aberrant TDP-43, and identifying the genetic or 

environmental mechanisms that lead to TDP-43 pathology. 

 

One other source of pathology strongly implicated in ALS is the hexanucleotide repeat 

expansion (HRE) of C9orf72 (C9ALS). This GGGGCC (G4C2) repeat expansion forms RNA with 

highly stable parallel G-quadruplex structures (G4 RNA) that can aggregate in nuclear foci176. 

How neurodegeneration occurs from HRE of C9orf72 is not well understood but putative 

mechanisms include loss of C9ORF72 from aborted transcription, bi-directionally transcribed 
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RNAs from the HREs, repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins 

(DPRs) from repeat RNAs of the HRE, and loss of function of RNA-binding proteins via 

sequestration in G4 RNA-containing nuclear foci176,177. Interestingly, TDP-43 has been shown to 

bind G4 RNA structure, transport these RNAs to neurites for local translation, and become 

sequestered by G4 RNA which may lead to TDP-43 loss of function toxicity178. Additionally, it 

has been shown that in the frontal cortex of patients with C9ALS there is a significant increase 

in REs (majority are LTRs, LINEs, DNA elements) compared to controls or sALS. It is suggested 

that these RE differences are the result of dipeptide-repeats inducing chromatin changes, but 

more research needs to be conducted179. Nucleocytoplasmic transport (NCT) defects have also 

been identified as critical contributors to C9ALS. Current studies suggests that G4 RNAs can 

cause defects by binding to a key regulator of NCT RanGAP1180. How DPRs cause toxicity is more 

controversial, putative mechanisms include DPRs directly binding nucleoporins inhibiting 

nuclear pores and DPRs inducing stress granules which sequester NCT transport factors177. 

Nevertheless, it is clear more research needs to be conducted to elucidate the mechanisms of 

toxicity in C9ALS. 
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Figure II-11: Roles of TDP-43 in RNA processing 

TDP-43 performs several roles in RNA processing. It is located primarily in the nucleus and helps 
with transcription, splicing, mRNA stability, and miRNA and long non-coding RNA processing. It 
also acts as a nucleo-cytoplasmic shuttle and in the cytoplasm will assist with stress granule 
formation and translation. Figure from Prasad et al., 2019172. 
 
Next generation sequencing in the clinic 

As medicine becomes more personalized the dizzying amounts of data generated by 

next generation sequencing can be overwhelming for researchers and clinicians who are 

incorporating NGS into patient care. It is often difficult to interpret NGS data and a recent 

survey of 204 neurologists indicated that 59% of them thought results should have 

demonstrated clinical utility for diagnosis, prognosis, or treatment. Furthermore, 69% of these 

neurologists thought results should be limited to genes relevant to a patient’s specific medical 

condition to limit incidental findings (unrelated information)181. Nevertheless, the personalized 

medicine revolution is upon us and is being utilized for neurodegenerative diseases182–185. In a 

clinical setting, tests for neurodegeneration using NGS are focused on variant calling and can be 

broken down into three approaches including whole genome sequencing [(WGS), i.e., DNA-seq, 

RNA-seq], whole-exome sequencing [(WES), all exons], and targeted-panel sequencing [(TPS), 
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select regions and genes]186. The choice of which approach to use often depends on the 

disease, costs, and amount of information needed for a diagnosis or treatment. Currently, TPS 

is the best choice for many neurodegenerative diseases (or WES for rare diseases), but is 

limited compared to WGS because it must rely on known panel locations and cannot (or rarely) 

recover information about non-coding RNAs, alternative splicing, or repetitive elements that 

are becoming increasingly relevant to neurodegeneration (as mentioned in previous 

sections)187.  

 

Conclusion 

Neurodegeneration will be a looming issue as we face an aging population. The 

economic impact on nations and burden on health care providers will only increase in the 

coming years. The mechanisms of how people develop neurodegeneration are largely unknown 

and what we do know involves highly complex dynamic systems with overlapping pathologies in 

diseases that are likely the result of compounding failures of the body. Nevertheless, 

discovering how these diseases arise and finding treatments will be essential to fixing these 

issues as we move forward. Now that the reader has a better idea of neurodegeneration, we 

will return to our focus on overlooked analyses of RNA seq data with two largely unknown 

analyses that have potential implications for neurodegeneration. These uncommon analyses 

consist of utilizing non-genomic reads to look for aberrant transcription downstream of genes 

and utilizing non-host reads to search for pathogenic infection. 
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Downstream of gene transcription 

 
Introduction 

 
This section entails identifying and quantifying non-genic reads in downstream of gene 

(DoG) regions due to aberrant transcription which is directly relevant to chapter III of this 

thesis. This area of research is relatively recent (~2015) and thus the underlying mechanisms of 

how DoGs are made, why certain genes have DoGs, what function they might have, and their 

implications for disease are largely unknown. This section will start with a brief overview of the 

process of transcription, discuss the known stressors that cause DoGs, the putative functions of 

DoG formation, and the putative mechanisms of DoG function. 

 
Transcription termination background 

Transcription termination is vital to genomic regulation. Most genes in eukaryotes are 

transcribed by RNA polymerase II (Pol II) and it is the carboxyl-terminal domain (CTD) of Pol II 

that interacts with cleavage and polyadenylation factors (CPSF) to generate the polyA tail. 

Currently, two models are proposed for how pre-mRNA polyA sites (PAS) are involved in 

transcription termination. The allosteric model describes Pol II sensing the PAS during 

elongation, which causes a conformational change in the Pol II active site that leads to Pol II 

release. The other model is called the torpedo model and proposes that the exonuclease Xrn2 is 

recruited to the PAS and triggers Pol II release when it degrades the downstream transcript and 

catches up to elongating Pol II188. Recent evidence suggests a unified model where 
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dephosphorylation of the elongation factor SPT5 in PAS cleavage slows and commits Pol II to 

the template strand allowing easy termination by XRN2 (Fig. II-12)189. 

 

 
Figure II-12: Models of transcription termination 
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Two current models for transcription termination. (A) Allosteric model proposes that 
poly adenylation sites (PAS) can induce a conformational change and induce cleavage factors 
which help Pol II disassociate from the DNA and induce termination. (B) In the Torpedo model, 
PAS cleavage induces degradation of Pol II associated RNA that is degraded by the 5’->3’ 
exonuclease XRN2. (C) Unified model of the Allosteric and Torpedo model. Pol II is slowed by 
dephosphorylation of SPT5 (via PNUTS/PP1) which acts as an allosteric switch. The switch 
ensures Pol II stays on the same strand allowing XRN2 to catch up when degrading the 
polymerase-associated PAS cleavage transcript. Figure from Eaton et al., 2020189. 

 
Stressors induce downstream of gene transcription 

Failure of proper transcription termination is induced by a variety of stressors including 

hyperosmotic stress, heat shock, oxidative stress, viral infections, and cancer190–194. Aberrant 

termination can lead to read through transcription past the annotated termination sites of 

genes. These downstream-of-gene (DoG) containing transcripts are long noncoding RNAs that 

are made minutes after cellular stress, are continuous with upstream mRNAs, and found at 

~10% of protein coding genes (Fig. II-13)190. Importantly, DoG counts and DoG lengths show low 

correlation of counts with the upstream gene indicating that gene expression alone cannot 

explain readthrough induction191. DoGs are believed to remain chromatin bound in the nucleus 

and remain at the site of transcription195. The extent to which DoGs are polyadenylated is 

unknown but a small amount of evidence suggests that they can be both poly and non-

polyadenylated190. Currently, it is unknown if neurodegenerative diseases induce DoG 

formation and a meta-analysis to look for DoGs across diseases is much needed in the field. 
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Figure II-13: Downstream of gene induction with osmotic stress 

Integrated Genome Viewer (IGV) screenshot of histogram of reads over the CXXC4 gene 
(5’ to 3’, right to left). The first two rows show CapSeq which identifies transcription start (TSS) 
regions and shows no alternative TSS sites are induced with KCL treatment. The bottom four 
rows show the forward and reverse strand of RNA-seq data and show downstream of gene 
transcription with KCL treatment. Figure from Vilborg et al., 2015190. 

 
Mechanisms of downstream of gene induction 

The mechanisms of DoG induction upon cellular stress are currently unknown and 

remain an active area of research. Initial experiments have shown that DoG regions are 

depleted of PAS suggesting some genes might be “primed” to induce DoGs190. How DoGs differ 

between various stressors is also unknown. It has been found that calcium signaling through 

IP3R is partially responsible for DoG induction in osmotic stress. With heat shock, it was found 

that genes with increased heat shock factor 1 (HSF1) binding at promoters showed greater heat 

shock-induced readthrough and that upon HSF1 depletion via siRNA there is reduced DoG 

transcription. A recent study of Herpes simplex 1 (HSV-1), found that termination defects are 

caused by an HSV-1 induced immediate early protein ICP27 inducing a null mRNA 3’ processing 

complex via its interactions with the CPSF complex which blocks/delays cleavage. Interestingly, 

IPC27 does this by binding to GC-rich sequences upstream of the PAS and this is what 

delineates correct transcription of viral genes compared to aberrant termination found in host 
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genes196. Indeed, there is significant overlap of DoGs from various stressors indicating that 

there might be a shared mechanism of induction for various stressors191,197. Additionally, it has 

been shown that knocking down CPSF73 which is a subunit of the CPA complex leads to a 

partial induction of DoGs190. Recently, it has been shown that depletion of a catalytic subunit of 

the integrator complex was able to induce readthrough at hundreds of loci and that these DoGs 

partially overlap with DoGs induced from osmotic stress198. 

 

Putative downstream of gene functions 

Along with how DoGs are made, what they might do is also unknown. DoGs are 

reported to stay in the nucleus and one hypothesis suggests they act as nuclear scaffolding to 

maintain nuclear integrity, but this hypothesis is difficult to confirm due to the thousands of 

DoGs that might act together as scaffolding190. Another potential mechanism involves 

regulation of gene expression by read through on the opposite strand inducing antisense RNAs. 

Natural antisense RNAs are pervasive in humans and up to 40% of genes show natural antisense 

transcription199. Antisense transcription can regulate genes by a variety of mechanisms, read 

through on the opposite strand could form dsRNA leading to editing and degradation via ADAR, 

collisions of Pol II leads to transcriptional interference and reduced transcription of convergent 

genes, antisense RNAs can act as masks that protect sense transcripts from being degraded, 

and antisense transcripts can create dsRNA that is then degraded by the RNA interference 

pathway (Fig. II-14)200. One study suggests that read through induced antisense RNAs from 

convergent genes leads to transcriptional repression and may act as a major mechanism for 
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cells undergoing senescence194. Importantly, dsRNA can activate the innate immune system (via 

Protein Kinase R) and it is possible that DoGs form dsRNA which activate the immune system. 

Indeed, it has been shown knockout of TDP-43 induces dsRNA accumulation, HSV-1 infection 

limits the accumulation of dsRNA (mainly viral dsRNA)201, but if these dsRNAs are formed from 

DoGs, what effects they have on the immune system, and their unique similarities or 

differences across stressors remains a mystery. 

 
Figure II-14: Cellular mechanisms of natural antisense transcripts 

Natural antisense transcripts occur from converging genes on the opposite strands. 
Antisense transcription can regulate genes by a variety of mechanisms. Transcripts on opposite 
strands can form dsRNA leading to editing and degradation via Adenosine deaminase acting on 
RNA (ADAR). Collisions of Pol II leads to transcriptional interference and reduced transcription 
of convergent genes. Antisense RNAs can act as masks that protect sense transcripts from being 
degraded, and antisense transcripts can create dsRNA that is then degraded by the RNA 
interference pathway. Chromatin changes induced by natural antisense transcripts can silenced 
transcription through repressive chromatin marks such as (H3K9 and H3K27). Figure from Wight 
et al., 2015200. 
Conclusion 
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The field of downstream of gene transcription analysis is relatively new and there are 

many discoveries to be made. Currently, only a few stressors such as osmotic stress, heat shock, 

viral infection, and a small number of diseases and/or cell types have been tested for DoGs, it 

will be prudent for researchers of the future to find out if there are additional conditions that 

induce DoGs. It will also be necessary for researchers to discover the unique or shared 

mechanisms of DoG induction across stressors, and what function (if any) DoGs have for 

maintaining proper cellular dynamics. From an algorithmic standpoint, methods of utilizing non-

host reads to distinguish regions of true read-through transcription (compared to sampling 

noise) and accurately quantifying regions of differential DoG transcription between conditions 

remain areas that are ripe for innovation. 

 

Biomes and bioprospecting 

 
Introduction 

 
Studies of the microbiome have exploded in the last two decades. Currently, what 

constitutes a healthy microbiome is still unknown and the implications on health and disease 

are still being discovered. With the ever-decreasing cost of sequencing and improvements in 

algorithms and techniques for identifying and quantifying biomes, this area has many 

discoveries to be made. This section will review the general history of microbial detection and 

quantification, how whole genome sequencing is used, methods of utilizing non-host reads, and 

pathogens implicated in neurodegenerative diseases. 
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Brief history of microbiomes 

The first study of human-associated microbiota dates back to the 1670s when Antoine 

van Leeuwenhoek described five different types of bacteria and distinguished differences 

between body locations and diseases202. Since then, initial back of the envelope estimates 

calculated a 100:1 ratio of bacteria cells to human cells which has since been revised to 1:1 at 

around 3.0 X 1013 cells203. Despite the similar amounts of bacterial and human cells, the sheer 

diversity of the human microbiome is staggering as there is ~45 million non-redundant bacterial 

genes (compared to ~20,000 in humans) and new strains being discovered each year (150,000 

in 2019 alone)204. Researching human-associated microbes and the microbiome is still a 

relatively new field but is vital to understanding health and disease. Although what constitutes 

a healthy biome is still unknown, disease associated bacteria and aberrant biomes have been 

implicated in immune dysfunction, asthma, behavioral disorders, cancer, and 

neurodegenerative disorders205,206. Milestones in microbiota research include culturing of 

anaerobes207 and development of germ-free mice models208 in the 1940s, fecal transplants to 

treat Clostridium difficile infection in the 1950s209, and development of the Human Microbiome 

Project in the late 2000s210. 

 

The identification and classification of microorganisms is a developing field with a 

variety of methods. Typical laboratory methods for bacterial detection take a long time to 

process samples, require specialized equipment and employees, and are not available in many 

countries211. Culturing bacteria is one of the primary techniques needed to obtain enough 
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sample for detection but relies on having the correct temperature, inoculation of the specimen, 

incubation, and culture medium which can be specific for each species212. Direct observation of 

microorganisms through microscopy (with or without staining) is the easiest method and is 

frequently done in a clinical setting to distinguish gram-positive from gram-negative bacteria213. 

A popular biochemical method for detection is an enzyme-linked immunosorbent assay (ELISA) 

that detects surface epitopes of bacteria. In addition, Electron microscopy has been used in 

many first-identifications of novel bacteria or viruses elucidating cell architecture and proteins 

at the molecular level but is low-throughput214. However, the methods mentioned above rely 

on culturing but not all bacteria can currently be cultured in a laboratory setting. These 

methods are still in use but are being replaced or supplanted by methods that focus on nucleic 

acids such as PCR and sequencing technologies. 

 

Sequencing technologies for microbiome analysis 

Early efforts using nucleic acids to categorize bacteria were focused on rRNA because it 

was initially hypothesized and confirmed that rRNAs evolve 100-fold more slowly than protein 

coding regions in bacteria215. It was found that slow and fast evolving regions exist in rRNA, and 

this allowed researchers to track differences in highly conserved regions to identify 

phylogenetic relationships that span long evolutionary time (slow) and fast evolving regions 

suitable for distinguishing bacteria within microbiota (fast). This comparison was initially done 

with oligonucleotide catalogues but was largely replaced with PCR targeting fast and slow 

evolving regions. As mentioned in the section on DGE, the development of quantitative real 
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time PCR (qPCR)216 was a tremendous boon to researchers studying gene expression and this 

was quickly utilized in microbial detection. The main advantages qPCR provides are fast and 

high-throughput detection of DNA sequences, low susceptibility to cross-contamination after 

initial amplification, and a wide dynamic range217. One of the main disadvantages of qPCR is 

that it cannot distinguish between live and dead cells and for this reason it is not widely used in 

pathogen detection in food because it will amplify DNA left over from non-viable pathogens218. 

Although qPCR is still in use, sequencing technologies greatly improved the throughput and 

detection capabilities for distinguishing variety and amounts of organisms in a biome.  

 

By far the most widely used system for bacterial community detection is 16S rRNA gene 

sequencing (Figure II-15)219. Typically, nine hypervariable regions (V1-V9) are targeted in the 

16s rRNA gene and V1-V3 or V3-5 are sequenced and clustered into bins called Operational 

Taxonomy Units (OTUs) based on a sequence similarity threshold (usually around 97% to 

delineate species)220. From an OTU cluster a single sequence is selected as representative and 

all other sequences in the OTU are annotated identically. OTUs are then classified using 

homology-based approaches using a reference database or prediction based approaches221. 

Some issues arise when using OTUs, in that the 97% species threshold is a rough estimate and is 

sometimes false. For instance, two different species can share 99% sequence identity (falsely 

classified as the same species), and a single strain could have multiple copies of the 16S rRNA 

gene that differ by 5% in certain regions (falsely classified as multiple species)222,223. Recently, 

studies analyzing amplicon sequence variants (ASVs) have shown single-nucleotide differences 
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over sequence regions and improved sensitivity and specificity compared to OTUs224. Overall, 

16S rRNA sequencing is commonly used because it is cost effective and has established 

databases and pipelines. Despite these benefits, 16S rRNA shows reduced detection capability 

of diversity, inability to distinguish between species (usually), and inability to identify all of the 

kingdoms of life compared to whole genome sequencing (WGS) approaches225. 

 
Figure II-15: Types of microbiome studies 

The amount in millions spent at the National Institute of Health Human Microbiome 
Project from 2012-2016. The data consists of six main types and include 16S rRNA analysis, 16S 
combined with immunological analyses, 16S with multiomic (transcriptomic, proteomic, 
metabolomic), and multiomic analysis alone. Figure from NIH Human Microbiome Analysis 
team 2019219 

 

With constantly decreasing costs, the field is moving to WGS for metagenomics     . 

Along with the ability to detect of all kingdoms of life, WGS allows researchers to obtain 

information about the function of genes, genomic structure, and identify novel genes within a 

community. WGS has been used in diverse fields such as greenhouse gas emission studies to 

differentiate rumen microbial communities in cows to identify high and low methane emitting 

cattle phenotypes and one striking example showed that certain global ocean microbial 
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communities share >73% identity with the human gut microbiome226,227. An WGS study is 

typically done by assembling sequenced data into contiguous sequences (contigs and scaffolds) 

and then identifying and/or quantifying organisms and genes (along with putative proteins) 

based on the contiguous sequences. Assembly approaches rely on the incorrect assumption 

that highly similar sequences originate from the same position in the genome and that similar 

sequences can be “stitched” together. In reality, assembling a genome depends on the length 

of reads and lengths of repeats being assembled and difficulties can be categorized as trivial 

(repeats are shorter than read length), computationally intractable (the correct answer requires 

an exponential number of arrangements of reads), and impossible (insufficient information in a 

read to identify the correct sequence reconstruction)228. Assembly using a “de novo” strategy 

(no reference genome) is the standard for biome studies and frequently employ the de Bruijn 

graph-based approach that constructs a graph by reading consecutive kmers (sequences of k 

bases long) in a read. Benchmarking of RNA-seq assembly algorithms for memory usage, 

usability, assembly across various organisms, and assembly with viral contamination showed 

similar top levels of performance from Trinity229, Trans-ABySS230, and SPAdes (rna setting)231.  

 

One of the most untapped avenues in microbial detection is called “bioprospecting” 

which uses non-biome related RNA-seq studies to search for microbes. In recent studies using 

the human genome, it was found that 9-20% of reads do not map to the host/reference 

(human) genome and these “junk” (host-unmapped) reads are utilized in bioprospecting232,233. 

Bioprospecting algorithms are a fairly recent development but can be divided into algorithms 
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that assemble non-host reads into contigs and rely on databases of microbial genomes for 

quantification234–237 and those that use non-host contigs and align reads back to the contigs for 

quantification238. With the large amounts of RNA-seq data being produced each year, it is likely 

that bioprospecting will grow in popularity and might become a standard quality control check 

for confounding variables in a study or illuminate potential biomarkers of disease. 

 
Pathogens in neurodegenerative diseases 

 
There has been a long history with variable success in the search for pathogens that 

contribute to neurodegenerative diseases such as Alzheimer’s disease (AD)239–241, Parkinson’s 

disease (PD)242–244, multiple sclerosis (MS)245 and ALS246–250. In addition, growing interest in the 

microbiota has shown an increasing role for gut microbiota influencing brain function and vice 

versa, in a bidirectional communication pathway termed the “microbiota-gut-brain” axis251. 

How the microbiota-gut-brain axis functions is complex as it relates to immune, neural, 

endocrine, and metabolic pathways, but will likely contribute tremendously to our 

understanding and prevention of neurodegeneration252. 

 

One of the diseases with the most amount of evidence for pathogenicity from infection 

is MS. The two main viruses implicated in MS are Epstein-Barr virus (EBV) and Human Herpes 

Virus-6 (HHV-6)253. Active replication of HHV-6 in MS correlates with a polymorphism in 

MHC2TA that codes for the Major histocompatibility (MHC) class II transactivator and it is 

thought that this lowers MHC class II molecules allowing the virus to escape immune 

detection254. In fact, a recent study showed a positive association of MS and higher levels of 
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antibodies to the viral subtype HHV-6A and that this was detected up to 10 years before MS 

symptoms occurred255. For EBV in MS, EBV infected B-cells are the primary putative source of 

pathogenesis and show increased antigen presentation and have been found in actively 

demyelinating lesions256. In addition to viruses, multiple studies have looked at bacteria or a 

synergism with bacteria and viruses in MS but all results have been inconclusive257.  

 

Recently, research on the role of the microbiome in Alzheimer’s disease has seen a 

deluge of studies in the areas of nutrition, sedentary lifestyle, sleep deprivation, and the 

underlying mechanisms of potential pathogenesis258. Intestinal bacteria can excrete functional 

amyloid peptides and Gram-negative endotoxin/lipopolysaccharide (LPS). One bacterial amyloid 

peptide called curli, is secreted by multiple bacteria in the gut and contains subunits similar to 

Aβ and is recognized by toll-like receptor (TLR) which can activate cytokines that cross the 

blood-brain barrier and contribute to neuroinflammation and neurodegeneration259,260. The 

jury is still out on if bacterial amyloids themselves are virulent or not261, and care must be taken 

as treatment with inhibitors of bacterial amyloids was shown to aggravate aggregation 

diseases262. LPS has also been implicated in AD and has been found to co-localize with amyloid 

plaques in AD brains, activate the immune response via TLR2 receptors, and contribute to 

amyloid plaque formation, myelin injury, and tau phosphorylation263. 

 

Diverse pathogens have been reported in the blood, cerebrospinal fluid (CSF) and central 

nervous system (CNS) from ALS patients. For example, bacteria that have been detected include 

Cutibacterium acnes, Corynebacterium sp, Fusobacterium nucleatum, Lawsonella clevelandesis, 
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and Streptococcus thermophilus in CSF264, and mycoplasma in blood265. Fungi, including Candida 

famata, Candida albicans, Candida parapsilosis, Candida glabrata, and Penicillium notatum, have 

been detected in CSF, while Malassezia globosa, Cryptococcus neoformans249, and Candida 

albicans have been found in various regions of the CNS249,266,267. The search for viruses that 

contribute to ALS pathology is much more extensive and includes studies on herpes virus247,268, 

enterovirus247,269–272, human immunodeficiency virus (HIV)273,274, and human endogenous 

retrovirus (HERV-K)275–277. Importantly, multiple studies using immunohistochemistry have 

shown an increased load of various pathogens in ALS samples compared to controls in multiple 

tissues suggesting these pathogens are present and cannot be simply attributed to 

contamination247,249,264,266,267. Ultimately, the presence of ALS dysbiosis is unresolved and 

remains an active area of investigation with evidence for278–282 and against283 it. 

 
Conclusion 

 
Microbiome research will continue to have a pivotal role in the study of health and 

disease. As sequencing technologies become cheaper and algorithms improve, we will continue 

to understand more of the underlying mechanisms that these organisms play in our lives (for 

good or bad). Additionally, large amounts of unused data (i.e., non-host reads) may be utilized 

to identify and quantify pathogenic or beneficial organisms relevant to disease. It is clear that 

further understanding of biomes will be crucial for delineating the causative role of pathogens 

in disease (if they have one) or as potential biomarkers of disease.  
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III. Dogcatcher: Heat shock in C. elegans induces downstream of gene transcription and 

accumulation of double-stranded RNA 
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Introduction 

 

Cytoplasmic proteotoxic stress induced by temperatures outside of the optimal range 

for cells or organisms triggers the heat shock response (HSR)284. The response to heat shock is 

multi-faceted and regulation of both transcription and translation occurs. Transcriptional 

responses include formation of stress granules, alternative splicing, and aberrant transcriptional 
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termination190,285–287. The HSR is a highly conserved transcriptional response and is driven 

largely by the heat shock transcription factor HSF1288. Under basal level conditions, HSF1 is a 

monomer in the cytoplasm and nucleus. Upon stress, HSF1 undergoes homotrimerization and 

binds to DNA heat shock elements (HSE) and initiates the transcription of heat shock protein 

genes289,290. In addition, translation of non-heat shock mRNAs is reduced through pausing of 

translation elongation as well as inhibition of translation initiation291–293. Regulation and 

clearance of misfolded proteins by heat shock proteins has been implicated in 

neurodegenerative diseases such as Huntington’s disease (HD), Parkinson’s disease (PD), 

Alzheimer’s disease, and amyotrophic lateral sclerosis294. 

 

Aside from the canonical binding of HSF1 to HSE loci, heat shock can cause HSE-

independent transcriptional changes285. In mammalian cells, HSF1 granules colocalize with 

markers of active transcription where HSF1 binds at satellite II and III repeat regions295. In the 

worm Caenorhabditis elegans, HSF-1 (worm ortholog of HSF1) granules also show markers of 

active transcription but the putative sites of HSF-1 stress granule binding are unknown296.  

 

In addition to formation of HSF1 stress granules, heat shock can cause reduced 

efficiency of transcription termination and the accumulation of normally un-transcribed 

sequences, designated in the literature as downstream of gene containing transcripts (DoGs)190. 

Recent studies have shown increased antisense transcription when read through transcription 

goes past the PAS into neighboring genes on opposite strands191,193,194,297. Antisense 
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transcription has the potential to modulate gene expression by creation of double-stranded 

RNA (dsRNA) with subsequent degradation through RNA interference (RNAi)200. 

 

Previous studies in our lab found deletion of tdp-1, the worm ortholog of ALS associated 

protein TDP-43, results in the accumulation of dsRNA foci174. In addition to deletion of tdp-1, 

we discovered that heat shock robustly induced nuclear dsRNA foci in worms. To assay this 

unexpected formation of dsRNA, we performed strand-specific RNA-seq and strand-specific 

RNA immunoprecipitation sequencing (RIP-seq) with the J2 antibody specific for dsRNA. In heat 

shocked worms, we find increased J2 enrichment of downstream of gene transcripts as well as 

genes involved in translation. To identify altered transcription genome-wide, we developed an 

algorithm called Dogcatcher that identifies DoG locations, genes that overlap with DoGs on the 

same or opposite strand, and an optional pipeline to provide differential expression of DoGs.  

  

Results 

 
Heat shock induces nuclear dsRNA foci in C. elegans 

 
While looking for conditions that might induce dsRNA foci besides loss of tdp-1, we 

found that heat shock robustly induced dsRNA nuclear foci. Upshifting wild type worms to 35ºC 

or 37ºC induced foci detectable with the J2 dsRNA-specific monoclonal antibody within 30 

minutes, primarily visible in intestinal and hypodermal nuclei.  To determine if these foci 

overlapped with previously identified nuclear HSF-1 stress granules, we repeated the heat 

shock experiment with strain OG497 (drSI13)296. This strain has a single copy insertion of hsf-1 
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with a C-terminal GFP driven by the hsf-1 promoter, and shows nuclear GFP expression that 

redistributes into granules after a one minute heat shock at 35ºC296. Using the J2 antibody for 

immunohistochemistry, we found J2 dsRNA foci in nuclear regions that partially overlapped 

with nuclear HSF-1 stress granules when drSI-13 worms were heat shocked for 35ºC for 40 

minutes (Fig III-1 A-C). Measuring coincidence of foci over one hour in 10 minute increments, 

we observe a significant change [Family Wise Error Rate (FWER) < 0.05] for all time points 30-60 

minutes compared to 10 minutes (Fig III-1 D). 
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Figure III-1: Heat shock induces nuclear foci detectable with dsRNA-specific antibody J2 

Mid-animal intestinal region of 4th larval stage drSI13 worm fixed 40 minutes after heat shock 
at 35º C. (A) Nuclear J2 foci (red arrows). (B) HSF-1 foci (green arrows). (C) Overlap of J2 foci 
and HSF-1 foci (orange arrows). White size bar in bottom right corner (20 microns across). DNA 
stained with DAPI (blue). (D) Quantification of occurrence of HSF-1 and J2 foci over time. 19-20 
worms scored per time point with 4 intestinal nuclei scored per worm. 

 
Since dsRNA foci partially overlap with HSF-1 stress granules, we were curious if a HSF-1 

partial loss of function mutant hsf-1(sy441)298 would change the amount of dsRNA foci present. 

We found no significant (FWER < 0.05) differences upon heat shock in the amount of intestinal 

J2 foci in the hsf-1(sy44) mutant compared to heat shocked wild type (Fig III-2). Similar to the 

hsf-1(sy441) mutant, we looked for any effect upon dsRNA formation in a rde-4(n337) knockout 

strain. RDE-4 is a double-stranded RNA binding protein (dsRBP) required for the initiation of 

RNA interference (RNAi) in C. elegans299. We found no significant differences (FWER < 0.05) 
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between heat shocked rde-4(n337) and heat shocked wild type strains, although we found low 

levels of dsRNA foci in non-heat shocked rde-4 (Fig III-2).  

 

Figure III-2. Quantification of J2 foci with or without heat shock in N2, rde-4, and sy441 mutants. 

Box plots of average J2 foci per 2-4 intestinal nuclei scored. 8 worms scored per condition. 
Analysis of variance (ANOVA) and Tukey HSD post-hoc analysis were used for multiple 
comparisons between conditions with a significance threshold of < 0.05 (Family Wise Error 
Rate). Importantly, the null hypothesis is rejected for any heat shocked condition compared to 
non-heat shocked condition. None of the heat shocked strains were significantly different from 
one another. None of the non-heat shocked strains were significantly different from one 
another, although there are some low-level amounts of J2 foci in rde-4. 
 
 
Recovery of dsRNA by J2 immunoprecipitation 

 
In order to identify dsRNA transcripts induced by heat shock, we performed strand-

specific RNA sequencing (RNA-seq) and strand-specific RNA immunoprecipitation sequencing 

(RIP-seq) (Figure III-3). Input RNA and RNA immunoprecipitated with the J2 antibody was 
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extracted and sequenced for heat shocked N2 (wild type) worms (in duplicate) and non-heat 

shocked worms (in triplicate). The J2 antibody is specific for dsRNA 40bp or more300 and 

transcripts from the J2 Immunoprecipitation (IP) could include full length dsRNA transcripts or 

single stranded RNA (ssRNA) adjacent to 40bp or more sections of dsRNA. dsRNA can occur via 

base pairing with a different transcript (interstrand) or self-complementarity within the same 

transcript (intrastrand). Similar to previous experiments, RNA immunoprecipitated samples 

were normalized to input RNA samples174,301.  

 

Figure III-3: Schematic of recovery of RNA pools for high throughput sequencing analysis. 

Control and heat shocked worm populations were recovered and lysed.  Worm lysates were 
then split to recover total input RNA or immunoprecipitated with the J2 antibody.  
 

Measurement of antisense gene transcripts after heat shock 

 
The apparent increase in dsRNA we observed in heat shocked worms [and previously 

observed in the tdp-1(ok803) mutant] could result from an increased accumulation of antisense 

transcripts. To obtain a global view of antisense levels, we calculated an antisense/sense ratio 
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for genes using the input RNA samples. For a stringent view of fold changes between 

conditions, genes with a minimum of 20 mean read count (sense and antisense pool) between 

condition and wild type were used for this analysis. Out of 46,760 worm genes, using this cutoff 

we scored 11091 genes in heat shock compared to wild type, and 10,831 genes in tdp-1(ok803) 

compared to wild type. When we look at antisense/sense ratios of read counts over genes for 

each condition compared to wild type (Fig III-4A), we find no difference in the ratio with heat 

shock (5513/11091 ~49.70%), and an increase in the ratio (7551/10831 ~69.71%) with the tdp-1 

deletion. Since antisense/sense ratios can increase either through depletion of sense transcripts 

or increases in antisense transcripts, we examined sense and antisense levels separately in each 

condition compared to wild type (Fig III-4B). With heat shock, we find no increase [log2 fold 

change (log2FC) > 0] in sense (4125/11091 ~37.91%) or antisense (3679/11091 ~33.79%) 

transcripts. With the tdp-1 deletion, however, we find noticeably fewer genes with increased 

sense counts (419/10831 ~3.86%) and no increase in antisense counts (3301/10831 ~30.47%) 

over genes compared to wild type. Thus, the increase in antisense/sense ratio in the tdp-1 

deletion arises because of lowered accumulation of sense transcripts rather than increased 

antisense transcript levels.  This was not unexpected as TDP-1 plays a role in normal 

transcription174.  
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Figure III-4: Quantification of genes with changes in antisense/sense ratios after heat shock or 
deletion of tdp-1 in input RNA. 

Violin plots of the ratio of read counts over gene regions for each condition compared to wild 
type (WT) [mean >20 for pooled counts (sense and antisense, condition and wild type), n=1]. 
(A) With heat shock 5513/11091 genes have a higher antisense/sense ratio compared to wild 
type (log2FC > 0, area of red violin plot above the black line). With tdp-1(ok803) 7551/10831 
genes have a higher antisense/sense ratio compared to wild type (log2FC > 0, area of purple 
violin plot above the black line). (B) With heat shock, 4125/11091 sense and 3679/11091 
antisense transcripts are upregulated compared to wild type (log2FC > 0, area of violin plot 
above the black line). With tdp-1(ok803) 419/10831 sense and 3301/10831 antisense 
transcripts are upregulated compared to wild type. 
 

To further validate this result, we analyzed the total RNA-seq data of Brunquell et al302, 

who performed similar heat shock experiments in C. elegans. In the Brunquell dataset we found 

a small increase in the amount of genes with significant antisense transcription upon heat shock 

(28/1818 ~1.54%) compared to no heat shock in wild type worms (Fig III-5).  We conclude that 
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in C. elegans heat shock does not result in transcriptional dysregulation that leads to a large 

increase in antisense transcripts. 

 

Figure III-5: Comparison of antisense transcripts in worms with heat shock (wild type) vs no 
heat shock (wild type) from Brunquell et al., 2016 

MA plot of significant (FDR <0.05, log2Mean > 4) antisense transcripts. Out of 1818 score-able 
genes that passed the mean cutoff, 28 were significant in heat shocked worms (red dots above 
the middle line), and 3 were significant for worms without heat shock (red dots below the 
middle black line). Data from from Brunquell et al., 2016303. 

 
Comparison of dsRNAs identified in worms heat shocked or deleted for tdp-1 

 
Considering that both heat shock and deletion of the tdp-1 gene lead to the formation 

of nuclear dsRNA foci, we sought to determine if this phenotypic similarity also extends to 

transcripts that are accumulating in the dsRNA pool. After heat shock, we found a large number 

of significant gene transcripts [false discovery rate (FDR) < 0.05 and a log2 mean expression 

(log2Mean) > 4]. Specifically, in the pool of RNAs immunoprecipitated by the dsRNA-specific 
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antibody J2 (relative to untreated worms), we found (4774/18737) significantly enriched or 

(1669/18737) significantly depleted transcripts (Fig. III-6A). We also identified antisense 

transcripts with significantly altered representation in the J2 IP pool, and found 650/8832 

enriched and 477/8832 depleted (Fig. III-6B). A minority of genes had both sense and antisense 

transcripts significantly enriched (180) or depleted (48) in the heat shock J2 IP pool (Fig. III-6 A-

B). In tdp-1(ok803) significant (FDR <0.05, log2Mean > 4) gene transcripts, we found a smaller 

number of sense enriched (418/13223) and depleted (59/13223) (Fig. III-6C), as well as 

antisense enriched (245/2343) and depleted (14/2343) genes (Fig. III-6D). Similar to heat shock, 

tdp-1(ok803) had relatively fewer genes with both sense and antisense transcripts significantly 

enriched (6) and depleted (1) (Fig. III-6C-D). We found a significant [P < 1 x 10-30, 

hypergeometric distribution (hgd)] overlap of J2 enriched gene transcripts between the heat 

shock and tdp-1(ok803) populations in both sense (Fig. III-6E) and antisense (Fig. III-6F), 

suggesting that there might be some similarities between the dsRNA accumulation induced by 

heat shock and deletion of tdp-1.  However, with J2 depleted transcripts, we found no 

significant overlap in (P = 0.165, hgd) in sense transcripts and no significant overlap in antisense 

transcripts (P = 0.187, hgd). 
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Figure III-6: Comparison of J2 enriched sense and antisense transcripts in heat shock and tdp-
1(ok803) worms. 

MA plots [“M” (log2FC) on y-axis and “A” (log2Mean) on x-axis] of significant (FDR <0.05) dsRNA 
enrichment for sense and antisense transcripts (analyzed independently) along with Venn 
diagrams of enrichment for enriched sense and antisense [n=2 for heat shock J2 samples, n=3 
for wild type, n=3 for tdp-1(ok803)]. (A) Heat shock over wild type J2 enriched sense transcripts 
with 4774 enriched (red) and 1669 depleted (blue). (B) Heat shock over wild type J2 enriched 
antisense transcripts with 650 enriched (red) and 477 depleted (blue). (A-B) enriched (180) and 
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depleted (48) heat shock vs wild type transcripts found in both sense and antisense (green 
triangles). C: tdp-1(ok803) over wild type significant J2 enriched sense transcripts with 418 
enriched (purple) and 59 depleted (blue). (D) tdp-1(ok803) over wild type significant J2 enriched 
antisense transcripts with 245 enriched (purple) and 14 depleted (blue). (C-D) enriched (6) and 
depleted (1) tdp-1(ok803) vs wild type transcripts found in both sense and antisense (green 
triangles). (E) Overlap of genes with significantly J2 enriched sense transcripts in both 
conditions compared to wild type worms. (F) Overlap of genes with significantly J2 enriched 
antisense transcripts in both conditions compared to wild type worms. 
 

We next sought to examine whether the dsRNAs arising in heat shock or tdp-1(ok803) 

showed enrichment for similar pathways. Using GOATOOLS304, we found that many Gene 

ontology (GO) terms related to translation were significantly enriched (FDR < 0.05) in both the 

heat shock and tdp-1(ok803) J2 IP pools. Out of 330 translation related genes classified by 

GOATOOLS, in sense J2 enriched transcripts, we find 234 translation related genes with heat 

shock, 27 translation related genes in tdp-1(ok803), and 19 translation related genes in the 

overlap. In the J2 depleted sense pool, only heat shocked worms contained translation related 

genes (30 total) with none in tdp-1(ok803) pool. In J2 enriched antisense transcripts, only heat 

shocked worms had 33 translation related genes. There were      no translation related genes 

found in J2 depleted antisense transcripts. Thus, the dsRNA recovered by J2 

immunoprecipitation is enriched for translation related pathways under both conditions, but 

there are distinct transcripts in heat shock compared to tdp-1(ok803) worms.  

 

J2 Enrichment of Repetitive elements 

 
Previous work in our lab has shown increased repetitive elements (RE) enriched for dsRNA in 

tdp-1(ok803)174. We wanted to see if heat shock would also show changes in repetitive elements. 

Using Repenrich2, REs are organized in clades with class at the top, followed by family, down to 
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fraction. In the worm genome, the majority of repetitive element families are in the DNA class. 

Within the DNA class we found all significant (FDR <0.05) families were depleted in heat shock J2 

(Fig. III-7 A).  

 
Among the DNA class, we found that 11 out of the top 15 most significantly (FDR <0.05) 

depleted REs were in superfamilies (TcMar, hAT, Piggyback) of Terminal Inverted Repeats of DNA 

class II transposons. In other non-DNA class families, only three families were significantly (FDR 

<0.05) enriched in heat shock J2 compared to wild type (Fig. III-7 B). When looking at the fraction 

level for these three families, we found that the fraction with the highest enrichment belonged 

to a satellite repeat RCD1. The R2 LINE element Nematode Spliced Leader-1 (NeSL-1), was the 

next highest J2 enriched fraction which also had the greatest mean out of all of the non-DNA 

class fractions. The last enriched RE (CELE45) is a type II Sine/tRNA element of unknown function. 

 

 

 
Figure III-7: Heatshock vs wild type J2 enrichment of repetitive elements 



63 
 

Heatshock vs wild type J2 enrichment of Repetitive elements (A) MA plots of heat shock over wild 
type J2 enrichment from all DNA class families of repetitive elements. (B) MA plot of heat shock 
over wild type from non-DNA class families. Shape and color correspond to class and family in 
Repenrich2. 
 
Enrichment of transcripts downstream of genes in the J2 pool 

 
While examining the transcription of known heat shock inducible genes, we noted in 

heat shocked populations an accumulation of read through transcripts downstream of 

annotated genes (see example in Fig. III-8). Interestingly, some of these downstream of gene 

transcripts (DoGs) were also highly enriched in the J2 IP pool.  While previous work has 

characterized the accumulation of downstream of gene transcripts in heat shocked cells from 

human190 and mice191, the phenomenon has not previously been associated with dsRNA 

accumulation. To annotate read through regions across the whole genome, we created an 

algorithm called Dogcatcher. Dogcatcher uses a sliding window approach (100 bps) to annotate 

read through regions.  In addition to Dogcatcher, we established an optional wrapper for 

quantifying differential expression through Rsubread and DESeq2. 
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Figure III-8: Aberrant transcription past the end of heat shock family genes showed enrichment 
in heat shock J2 

Normalized histogram from the Integrative Genomics Viewer (IGV). On each track, the sense 
strand is on the top part of the histogram and antisense is on the bottom (Max read depth +/- 
200). Wild type (WT) sense (dark blue) and antisense (light blue), heat shock (HS) sense (red) 
and antisense (orange). Gene transcription continues past the 3’ end of gene (blue arrow) in 
heat shock, leading to an annotated downstream of gene transcript (DoG) (green arrow).  
 
 

Using the Dogcatcher algorithm in conjunction with the C. elegans genome annotation 

to identify DoGs de novo, we were able to quantify downstream of gene transcripts in the J2 IP 

pool that would be missed using the standard C. elegans genome annotation. Differential 

expression of transcription in downstream of gene regions can occur via novel DoGs that are in 

one sample and not another, or by varying levels of transcription of a DoG that is expressed in 

both samples.  Our analysis suggests that both mechanisms may be involved. When we 

compare heat shocked worms to wild type in the J2 IP and input RNA, we find the majority of 

annotated DoGs (272/490 ~56%) come from the J2 IP from heat shocked worms (Fig. III-9A). 

When we compare tdp-1(ok803) worms to wild type in the J2 IP and input RNA, we find that the 

largest fraction comes from input RNA from tdp-1(ok803) worms (85/300 ~28%) followed 

closely by DoGs that are shared between J2 IP and input RNA for both wild type and tdp-
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1(ok803) worms (52/300 ~17%) (Fig. III-9B). This suggests that with heat shock the majority of 

DoGs are novel dsRNA enriched regions, in contrast to the tdp-1 deletion which has a bigger 

overlap with DoGs in wild type samples. 

 

To quantify differential expression, we used the Dogcatcher optional differential 

expression wrapper. After heat shock, more read through sections were significantly (FDR 

<0.05, log2Mean > 4) enriched in the J2 IP pool than depleted (84 vs. 25 out of 421) (Fig. III-

10A). Of the 84 DoGs significantly increased in the J2 IP pool with heat shock, the largest group 

of DoGs (35/84 ~41.66%) are only present in the J2 IP (Fig. III-9C). Of the 25 DoGs significantly 

decreased in the J2 IP with heat shock, we find a fairly even split between groups (Fig. III-9D).  
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Figure III-9: DoGs and DoGs significant with heat shock or tdp-1(ok803) mutation 

Upset plots are venn diagram-like plots. Each set is on a row with total amount in a set as a blue 
bar plot on the left.  The black histogram on top shows the counts that are in the intersection of 
sets (a single dot for one set or connected dots for multiple sets). DOGs that overlap with 
operons on the same strand have been removed. (A) Upset plot of all DoGs that are found with 
heat shock (HS) or wild type worms (WT) for the J2 pulldown or input RNA (INP). Heat shock J2 
shows the most novel DoGs. (B) Upset plot of all DoGs that are found with the tdp-1 deletion 
(OK) or wild type worms for the J2 pulldown or input RNA. the tdp-1 deletion input sample 
shows the most amount of novel DoGs. The second highest amount is shared by all four 
samples. (C) DoGs significantly enriched with heat shock in the dsRNA pull down. Notably 35 of 
these are only found in the heat shock J2 pull down. (D) DoGs significantly depleted with heat 
shock in the dsRNA pull down. 
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Figure III-10: enrichment of DoGs and ADoGs in heat shock and tdp-1(ok803) worms 

MA plots of significant (FDR <0.05) dsRNA enrichment for DoGs and ADoGs. Annotated genes 
that were not significantly changing were added in with DoGs or ADoGs for DESeq2 
normalization but were taken out of the plots for clarity [n=2 for heat shock J2 samples, n=3 for 
wild type, n=3 for tdp-1(ok803)]. (A) Heat shock over wild type J2 enriched read through sense 
transcripts with 84 enriched (red) and 25 depleted (blue) out of 421 scored DoGs. (B) tdp-
1(ok803) over wild type significant J2 enriched read through sense transcripts with 3 enriched 
(purple) out of 265 scored DoGs. (C) Heat shock over wild type J2 enriched read through 
antisense transcripts with 2 enriched (red) out of 70 scored ADoGs. (D) No significant tdp-
1(ok803) over wild type J2 enriched read through antisense transcripts out of 43 scored ADoGs.  

 

We found that for DoGs enriched in the J2 IP pool after heat shock, the majority 

corresponds to protein coding genes (60%), followed by non-coding RNA (ncRNA) (20%), 

pseudogenes (9%), and small nucleolar RNA (snoRNA) (9%). When we looked at significant 

sense genes with corresponding significant DoGs upon heat shock, we found 62 out of 84 
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enriched and 11 out of 25 depleted DoGs in the J2 IP have corresponding significant genes (Fig. 

III-11A-B).  Consistent with our results, we found a small increase in the amount of significant 

(FDR <0.05, log2Mean > 4) DoGs upon heat shock (23/488 ~4.7%) compared to wild type (2/488 

~0.4%) in the Brunquell et al302 dataset (Fig. III-12A). 

We found far fewer significantly (FDR <0.05, log2Mean > 4) J2 enriched DoGs from tdp-

1(ok803) (3 out of 265) with no regions being depleted (Fig. III-10B). Interestingly, 2 out of the 3 

DoGs in tdp-1(ok803) were also enriched in the heat shock J2 pool. When we looked at 

significant sense genes with corresponding significant DoGs upon tdp-1 deletion, we found 1 

out of 3 DoGs enriched in the J2 IP have corresponding significant genes (Fig. III-11C). 

From the significantly enriched GO terms of DoGs in heat shock and tdp-1(ok803) 

worms, only heat shocked worms had any significantly enriched GO terms, which primarily 

consisted of histone genes. As a possible explanation for the formation of dsRNA at 

downstream of gene regions, we found DoGs to be enriched in terminal repeat sequences 

compared to a random intergenic downstream background. (Fig III-13). 

 

 
Figure III-11: Venn Diagrams of overlap between significant genes and DoGs 

(A) Out of 4774 genes and 84 DoGs enriched in the J2-IP with heat shock, 62 overlap. (B) Out of 
1667 genes and 25 DoGs depleted in the J2-IP with heat shock, 11 overlap. (C) Out of 418 genes 
and 25 DoGs enriched in the J2-IP with the tdp-1 deletion, 1 overlap. Since there was no 
significant DoGs depleted with the tdp-1 deletion there was no overlap. 
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Figure III-12: Comparison of DoGs and ADoGs in worms with heat shock (wild type) vs no heat 
shock (wild type) from Brunquell et al., 2016. 

 
MA plots of significant (FDR <0.05, log2Mean > 4) DoGs and ADoGs. (A) out of 488 DoGs, 23 
DoGs were significantly up with heat shock (red dots above the middle line) compared to 2 
down (red dots below the middle line. (B) Out of 51 ADoGs, 4 ADoGs were significantly up with 
heat shock. 
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Figure III-13: Number of Terminal Inverted Repeats (TIR) overlapping downstream regions. 

DoGs have a significantly different percentage of terminal inverted repeat counts compared to 
a random downstream intergenic background. Heat shock enriched (green), depleted (yellow), 
and non-significant (red) means of normalized TIR counts. Histogram was created with 10,000 
means of random downstream intergenic background regions with rugplot counts for each 
mean (blue) and two standard deviations from the mean marked (black). 
 

Additional non-annotated transcripts are minimally enriched in the J2 pool after heat shock 

or tdp-1 deletion 

 
 Next, we were curious if other sections around genes would show aberrant transcription 

in heat shock or tdp-1(ok803) worms. Expanding on the DoG nomenclature, the terms we use 

for the three other types of transcription flanking an annotated gene are as follows: regions 

downstream of genes with antisense reads (ADoGs), sense reads in regions previous of the 

gene (PoGs), and antisense reads in regions previous of the gene (APoGs) (Fig. III-14). 

Importantly, novel areas of intergenic transcription are obtained by filtering out PoGs with any 
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overlap to DoGs on the same strand, as well as ADoGs or APoGs with any overlap to DoGs (or 

genes) on the opposite strand (Fig. III-14 and Fig. III-15). We did not find any significantly (FDR 

<0.05, log2Mean > 4) J2 enriched PoGs or APoGs in either condition compared to wild type. We 

found a small amount of significant (FDR <0.05, log2Mean > 4) J2 enrichment in heat shock 

ADoGs (2 out of 70) (Fig. III-10C) and no ADoGs enriched in tdp-1(ok803) out of 43 scored 

ADoGs (Fig. III-10D). 

 

Consistent with our heat shock results, in our analysis of Brunquell et al., 2016, we 

found a small increase in the amount of significant (FDR <0.05, log2Mean > 4) ADoGs upon heat 

shock in wild type worms (3/51 ~5.88%) and no significant ADoGs without heat shock. (Fig. III-

12B). 
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Figure III-14: Dogcatcher flattening and nomenclature. 

First, genes were removed that were inside of other genes. With sense and antisense reads and 
two regions flanking a gene, four types of classification can be made. Downstream of gene 
transcription with sense reads (DoGs), downstream of gene transcription with antisense reads 
(ADoGs), previous of gene transcription with sense reads (PoGs), and previous of gene 
transcription with antisense reads (APoGs). 
 
 
 

 
Figure III-15: Dogcatcher additional filtering. 
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When searching for DoGs, we removed any genes that had overlap with genes downstream on 
the same strand. For PoGs we removed genes with any upstream overlap. Novel transcription 
termination sites can be found downstream of genes with DoGs. Novel transcription start sites 
can be found with PoGs. ADoGs or APoGs with overlap to genes or DoGs on the opposite strand 
are removed. 
 

Increased antisense transcription over genes associated with DoGS and ADoGS 

Next, we were curious if any aberrant read through transcription might overlap genes 

and contribute to increased antisense reads within the gene. We define an overlapped gene as 

any gene that has an ADoG associated with it or an opposite strand DoG with any overlap to the 

gene. We next define a significant overlapped gene as any gene that has significant (FDR <0.05, 

log2Mean > 4) antisense transcript levels as well as an associated significant (FDR <0.05, 

log2Mean > 4) ADoG or opposite strand DoG (overlapping the gene). From our significant 

overlapped genes, we found 17 enriched and 5 depleted with heat shock, and only 4 enriched 

and no depleted in tdp-1(ok803) worms. We did not find any overlapped genes that were 

significantly enriched for GO terms related to translation.       

Antisense read through into eif-3.B in heat shocked worms 

 
Visual inspection of DoG transcripts identified one transcript downstream of the ncRNA 

W01D2.8 (doW01D2.8) that ran into the gene eif-3.B on the opposite strand (Fig. III-16) (Since 

doW01D2.8 is inside of the gene W01D2.3 on the same strand, annotation of this DoG starts at 

the end of the W01D2.3). eif-3.B is an ortholog of human EIF-3.B (eukaryotic translation 

initiation factor 3 subunit B) and is involved in translation initiation. As the doW01D2.8 

transcript was strongly increased by heat shock in both the input and J2 IP pools, we chose to 

target this transcript to confirm our RNA-seq data. Fluorescent in situ hybridization (FISH) was 
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used as this could both demonstrate the accumulation of the doW01D2.8 transcript and 

determine its cellular and subcellular (i.e., possible colocalization with J2 foci) distribution.  

 

 

Figure III-16: Heat shock induces transcripts antisense to the eif-3B locus. 

IGV view of eif-3.B. Normalized tracks with the sense strand on the top part of the histogram 
and antisense on the bottom with a max read depth of 200 for sense or antisense. Wild type 
(WT) sense (dark blue), WT antisense (light blue), heat shock (HS) sense (red), heat shock 
antisense (orange). Horizontal blue arrows indicated genes and gene direction 5’ to 3’. 
Horizontal red arrows on the right show a cluster of ncRNAs including W01D2.8 and 
transcription downstream of W01D2.8 (doW01D2.8) into eif-3.B (green arrow going left). 
Arrows on the bottom correspond to locations of probes for FISH (brown: 5’ Intergenic, purple: 
Second exon, black: 3’ UTR). 

 

Three strand-specific fish probes at the 5’ intergenic region (5’ INT) (antisense), first 3 

exons (sense), and the last exon along with the 3’ UTR (LE 3’UTR) (antisense) of eif-3.B (Fig. III-

17D) were designed.  First, we performed immunohistochemistry with the J2 antibody along 

with FISH for antisense transcripts that contain the last exon and 3’ UTR (Fig. III-17A). We find 

that doW01D2.8 is transcribed in this region with heat shock and commonly forms two foci per 
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nucleus, but does not colocalize with dsRNA foci. The 5' and 3’ doW01D2.8 probes do strongly 

colocalize in the nuclear foci (Fig. III-17B), consistent with a single transcript spanning this 

region. Unfortunately, when probing for the 5’ intergenic region (antisense) and first three 

exons (sense), the sense probe was undetectable in young adults. However, in embryos the 

sense probe was detectable, and we did not find the sense probes colocalizing to the antisense 

foci (Fig. III-18). To inquire if the eif-3B antisense foci were a general site of transcript 

accumulation, we probed for C30E1.9, a long ncRNA that is highly expressed, forms nuclear foci, 

but is not induced in heat shock. We observed that this transcript does not overlap with the eif-

3B antisense foci (Fig. III-17C). Lastly, we wanted to see if deletion of tdp-1, which does not lead 

to accumulation of eif-3B antisense transcripts, would alter heat shock induced accumulation of 

these transcripts. We found that the tdp-1 deletion did not alter the formation of eif-3B 

antisense transcripts (Fig. III-17E).  
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Figure III-17: Fluorescence in situ Hybridization (FISH) of eif-3.B regions 

100x oil immersion images of worm hypodermal and neuronal cells. Heat shock panels are in 
the three columns to the left (merged channel in the middle column). Control panels show 
exposure from every channel (right column). Row (A) Immunohistochemistry with J2 antibody 
(green) along with FISH of doW01D2.8 antisense to the last exon and 3’ UTR (LE 3’ UTR) (red) of 
eif-3.B. dsRNA and the antisense LE 3’UTR transcript aggregate into nuclear foci with heat shock 
and do not appear to colocalize. Row (B) FISH of doW01D2.8 in two regions antisense to the 5’ 
intergenic region (5’ INT) (green) and last exon and 3’ UTR (LE 3’UTR) (red) of eif-3.B. Row (C) 
FISH of doW01D2.8 antisense to the last exon and 3’ UTR (LE 3’UTR) (red) of eif-3.B and sense 
probe of ncRNA C3DE1.9 (green). Probing of C3DE1.9 is not affected by heat shock and C3DE1.9 
is not induced by heat shock. C3DE1.9 and LE 3’UTR show no overlap. (D) Diagram of eif-3.b 
gene with FISH probe locations and orientation. (E) Heat shock of tdp-1(ok803) induces nuclear 
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foci from probes antisense to the last exon and 3’ UTR (LE 3’UTR) of eif-3.B (left panel) and is 
not visible with no heat shock (right). 

         
Figure III-18: Sense and antisense eif-3B transcripts do not colocalize. 

Shown is a ~ 30 cell embryo fixed and probed for eif-3B antisense (left panel) and sense (middle 
panel) transcripts by fluorescence in situ hybridization (FISH) (white size bar is 10 microns 
across).  Note that the eif-3B antisense transcripts localize to distinct nuclear foci (green 
arrows) which do not colocalize with the eif-3B sense transcripts (red arrows). 
 
 

Discussion 

 
We show that heat shock induces nuclear dsRNA foci that partially overlap with HSF-1 

nuclear stress granules.  A loss of function mutation in hsf-1 does not block the formation of 

heat shock induced dsRNA foci, although because this is a hypomorphic mutation we cannot 

exclude the possibility that HSF-1 plays some role in the formation of heat shock induced dsRNA 

foci. After heat shock, we find a general increase in the amount of dsRNA and expression levels 

of transcripts with dsRNA structure, assayed using the dsRNA-specific monoclonal antibody J2. 

The dsRNA transcripts recovered by J2 immunoprecipitation after heat shock partially overlap 

with J2 transcripts previously identified in C. elegans worms deleted for tdp-1.  This result 

suggests that while heat shock does not directly mimic the effects of loss of tdp-1, these two 

conditions likely share some overlapping biological processes. In addition, we find that heat 

shock induces accumulation of novel downstream of gene transcripts. To our knowledge this is 

the first time heat shock has been shown to lead to the accumulation of these abnormal 

transcripts in an in vivo model. In addition to global depletion of J2 immunoprecipitated 
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transcripts from LTR’s, we find that all DNA class elements are depleted globally and the 

majority of significantly depleted superfamilies (TcMar, hAT, Piggyback) are from Terminal 

Inverted Repeats. Among J2 enriched repetitive transcripts in heat shock, we find one RE (NeSL-

1) with a potential mechanism to reduce transcription by inserting into SL-1 genes and causing 

aberrant trans splicing. How this relates to humans is harder to answer, as none of the splice 

leader mechanisms exists in humans.  

 

Double-stranded RNA can form intrastrand or interstrand base-pairing. Our data suggest 

that both types of dsRNA may be contributing to the dsRNA pool induced by heat shock.  We 

find that novel downstream of gene transcripts are enriched in the J2 IP pool.  These novel 

transcripts are enriched in inverted repeat sequences, which may be contributing to the 

formation of intrastrand (hairpin) dsRNA. Downstream of gene transcripts also have the 

potential to generate transcripts antisense to neighboring genes on the other strand.  This has 

been reported in the heat shock study by Vilborg et al191, and we have noted similar examples 

in our data.  Using our new Dogcatcher algorithm, we have also documented novel transcripts 

originating in intergenic regions, which also have the potential to generate antisense 

transcripts.  Indeed, we observe that antisense transcripts are enriched in the J2 IP, supporting 

the formation of interstrand dsRNA. We note that the J2 antibody immunoprecipitation 

protocol used in our study will recover transcripts that have only partial (at least 40 

nucleotides) dsRNA structure, thus it is feasible that some transcriptional regions we recover 

after J2 IP are single stranded extensions of double stranded regions. 
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The accumulation of dsRNA transcripts after heat shock could be the result of altered 

RNA production and changes in RNA stability or turnover.  Further studies will be required to 

definitively determine the relative contribution of these cellular processes.  Published studies 

demonstrate that loci susceptible to heat shock induced downstream of gene transcription are 

marked by open chromatin before heat shock191 and are depleted of the transcriptional 

termination factor CPSF-73 after heat shock305.  These results suggest that altered 

transcriptional processing itself leads to the altered transcript accumulation after heat shock.  

However, the significant overlap of transcripts enriched in the J2 pool resulting from heat shock 

and from deletion of the tdp-1 gene suggest that changes in RNA stability may be also 

contributing to transcript accumulation. TDP-1 is orthologous to mammalian TDP-43, and we 

have previously shown that human TDP-43 can act as an RNA chaperone in an in vitro assay 174. 

Conceivably, heat shock could inhibit the function of TDP-1 or other similar RNA binding 

proteins, leading to the formation of more dsRNA structure in existing transcripts.   

 

We employed fluorescence in situ hybridization (FISH) to confirm heat shock induced 

expression of DoG and antisense transcripts in the eif-3.B region, and to examine their 

subcellular localization. These novel transcripts were found in nuclear foci that did not overlap 

with the J2 dsRNA foci, and were typically limited to two spots in each nuclei.  This two foci 

distribution is very similar to the FISH characterization of DoG transcripts described by Vilborg 

et al, and strongly suggest that the eif-3.B loci transcripts are associated in cis with their site of 

production.  These antisense transcripts clearly did not contribute to the foci detected by J2 

immunostaining, and may reflect a general dysregulation of transcription at the eif-3.B locus. 
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Identification of the dsRNA species present in the J2 foci induced by heat shock may require 

development of a protocol to purify these RNA granules, as we have identified thousands of 

transcripts enriched in the J2 pool, and have no additional insight as to which ones might be 

found specifically in the J2 foci.   

 

A critical issue is whether the accumulation of novel transcripts and dsRNA after heat 

shock have a biological function. By characterizing transcriptional changes induced by a variety 

of stresses, Vilborg et al concluded that transcriptional read through was not a random failure, 

and suggested it might have a functional role in stress responses. We have characterized the 

accumulation of dsRNA after heat shock, and by gene ontology analysis find that the sense and 

antisense transcripts in this pool (as well as the J2 IP pool in tdp-1 deletion mutants) are 

enriched in genes involved in translation. Given that we find significant J2 IP enrichment of both 

sense and antisense transcripts from genes related to translation, it is tempting to speculate 

that the formation of interstrand dsRNA might reduce the translation of these “translation 

related transcripts”, leading to a down regulation of global translation, a protective event 

against most cellular stress insults including heat shock. While we have no direct evidence that 

dsRNA dependent translational downregulation happens after heat shock in C. elegans, we 

note that deletion of tdp-1 has been reported to protect against proteotoxicity and increase 

lifespan 306.  Translational downregulation would presumably be protective against 

proteotoxicity, and post developmental knockdown of translation initiation factors strongly 

increases lifespan in C. elegans307.  
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Materials and methods 

 
Caenorhabditis elegans culturing and strains  

 
Hermaphrodites from each strain were kept at 16 ºC on Nematode Growth Media 

(NGM) plates seeded with Escherichia coli strain OP50 as a food source according to standard 

practices 308. To obtain age synchronized worms, we used alkaline hypochlorite bleach on gravid 

adults to obtain eggs that were hatched overnight in S-basal buffer309. Worms were then 

allowed to grow to 1 day old adults (approximately 80h at 16ºC). 

 

Heat stress treatment  

 
Heat stress treatment was performed in an air incubator set to 35 ºC for 3 hours for the 

RNA-seq experiments. After stress, populations were washed off with S-basal buffer and 

immediately fixed for immunohistochemistry or fluorescence in situ hybridization (FISH), flash 

frozen in liquid nitrogen for quantitative reverse transcriptase polymerase chain reaction (qRT-

PCR), or crude extracts were created with subsequent J2 Immunoprecipitation (J2 IP) as 

previously described174. 

 

 
 
RNA isolation, cDNA library preparation, and RNA Sequencing 

 
Total RNA was extracted from worms using TRIzol (Invitrogen #15596026) extraction 

and used as input RNA. Chloroform was used to solubilize proteins and TURBO DNAase 

(Invitrogen) was used to remove DNA. For input RNA libraries, 5 μg of RNA was ran through a 
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RiboZero column (Epicenter, #R2C1046) to remove ribosomal RNA.  Libraries were created 

using Illumina TruSeq kits (RS-122-2001). RNA recovered by immunoprecipitation with the J2 

antibody of young adult worms as well as input material (as a loading control) was converted 

into strand-specific total RNA libraries using V2 Scriptseq (Epicenter #SSV21106) kits following 

manufacturer's instructions, except reverse transcription was done with SuperScript III 

(Invitrogen #18080 044) using incrementally increasing temperatures from 42 to 59 °C to allow 

for transcription though structured RNAs. rRNA was not removed from J2 IP RNA samples. 

Libraries were sequenced on an Illumina HiSeq 2000 platform at the Genomics Core at the 

University of Colorado, Denver. Data were deposited under GEO accession number GSE120949. 

 

Immunohistochemistry and Fluorescence in situ Hybridization (FISH)  

 
For immunohistochemistry, all washes used a constant volume of 1ml sterile S-basal 

buffer unless otherwise noted. Worms were first washed off plates, spun down into a pellet, 

and fixed in 4% paraformaldehyde. Worms were then resuspended in 1ml of Tris-Triton buffer 

with 5% beta-mercaptoethanol and incubated in a rocker for two days at 37◦C. After two days, 

worms were washed two times and put into collagenase buffer. Next, worms were placed into 

a 1:1 dilution of 1mg/ml type IV collagenase (Sigma) and S-basal buffer for 45 minutes at 37 ºC 

with rocking. Worms were checked under the microscope to ensure cuticle breakage then 

quenched in cold Antibody buffer A (1X Phosphate buffered saline, 0.1% Bovine Serum 

Albumin, 0.5% Triton X-100, 0.05% Sodium Azide). Worms were then washed, pelleted, and 

primary antibodies were added for 16 hours at 4◦C. Next, worms were washed twice in 

Antibody buffer B (same as Antibody buffer A except using 1% Bovine Serum Albumin), 
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pelleted, and secondary antibodies were added with subsequent incubation for 2 hours at room 

temperature. Finally, worms were washed twice in Antibody buffer B and then placed in 50ul of 

Antibody buffer A. Permeabilized worms were probed with the primary J2 antibody (English and 

Scientific Consulting Lot: J2-1102 and J2-1103) at 4μg/mL and secondary antibody Alexa dye-

conjugated goat anti-mouse at 4μg/mL. DAPI nuclear stain was added along with secondary 

antibodies at 5μg/mL to visualize nuclei.  

 

Stellaris FISH probes (Biosearch technologies) 310 were custom designed using the 

Stellaris RNA FISH probe designer. Three regions were chosen for probing, and each probe was 

tested against the C. elegans genome using BLAST to identify any complementarity to non-

target sequences. A probe was excluded if it was in an intron, had a highly repetitive sequence 

outside of the region, or matched other regions up to 18nt long with high transcriptomic 

expression viewed in the Integrative Genome Viewer (IGV) 311.  

 

For FISH probing and storage, the Stellaris protocol for C. elegans was followed using 

RNAase OUT (Invitrogen) when applicable. Briefly, worms were washed off plates using 

nuclease-free water and fixed for 45 minutes at room temperature in a fixation buffer (1:1:8 of 

37% formaldehyde, 10X RNAase-free phosphate buffered saline (PBS), nuclease-free water). 

Worms were then washed twice with 1X RNAase-free PBS and permeabilized in 70% ethanol 

overnight at 4◦C. Worms were then incubated at room temperature in Stellaris Wash Buffer A, 

pelleted, and incubated for 16 hours in a 37 ºC water bath in the dark with 100μl of the 

hybridization buffer (9:1 of μl Stellaris RNA FISH hybridization buffer, deionized formamide with 
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a 100:1 Hybridization buffer, FISH probe). Next, 1mL of Stellaris Wash Buffer A was added with 

30 more minutes of incubation in the dark 37 ºC water bath. Stellaris Wash Buffer A was then 

aspirated and incubated with DAPI (1:1000 of 5μg/ml DAPI, Stellaris Wash Buffer A) for 30 more 

minutes of the dark 37 ºC water bath. Lastly, the DAPI buffer was aspirated and 1mL of Stellaris 

Wash Buffer B was added with a 5 minute room temperature incubation. 

 

A modification of the immunohistochemistry protocol was used when doing 

immunohistochemistry and FISH. The immunohistochemistry protocol was the same except all 

washes were done using RNAase-free PBS or water and RNAase-free reagents (Tris-Triton 

buffer, collagenase buffer, collagenase, Antibody Buffer A, Antibody Buffer B) were created by 

adding RNAase OUT (2:10000 of RNAase OUT, reagent). After antibody staining, the FISH 

protocol was started at the hybridization step. 

Microscopy  

 
Images were acquired with a Zeiss Axiophot microscope equipped with digital 

deconvolution optics (Intelligent Imaging Innovations). Image brightness and contrast were 

digitally adjusted in Photoshop.  

 

Quantification of coincidence of J2 and HSF-1 foci over time and J2 foci in mutant strains 

 
For the quantification of coincidence of foci over time, intestinal nuclei of the worms 

were isolated from the rest of the image and the Foci Picker3D plug-in was used to count foci. 

The FITC channel of the image was converted to 16 bit and analyzed. Foci Picker3D settings 
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were changed from default by changing the Minlsetting to 0.25 and the ToleranceSetting to 20 

before running analysis. 19-20 worms were selected for each time point. Analysis of variance 

(ANOVA) and Tukey honestly significant difference (HSD) post-hoc analysis were used for 

multiple comparisons between conditions with a significance threshold of < 0.05 (Family Wise 

Error Rate). The script for the ANOVA and post-hoc is available at 

https://github.com/Senorelegans/heatshock_and_tdp-

1_dsRNA_scripts/tree/master/fig1_coincidents_of_foci/fig_supplemental_graph_foci 

 

Quantification of J2 foci in mutant strains with or without heat shock was done blindly. 8 

worms per condition were counted and the average number of foci from 2-4 intestinal nuclei 

were used to make the box plots. Analysis of variance (ANOVA) and Tukey HSD post-hoc 

analysis were used for multiple comparisons between conditions with a significance threshold 

of < 0.05 (Family Wise Error Rate). The script for creating boxplots and ANOVA and post-hoc is 

available at https://github.com/Senorelegans/heatshock_and_tdp-

1_dsRNA_scripts/tree/master/fig_supplemental_graph_foci 

 

 

Sequencing data analysis  

 
Reads were checked for quality with FastQC v0.11.7 312, adapters were trimmed using 

Trimmomatic-0.36313, and reads were aligned to the worm genome WS258 using STAR-2.5.2b 

314.  Genes and DoGs (identified by Dogcatcher, described below) were assigned counts using 

Rsubread v1.28.1 featureCounts 315 and were rRNA normalized according to the rRNA 
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subtraction ratio (RSR) (described in supplemental). Differential expression was obtained using 

DESeq2 v1.20.0 and the likelihood ratio test (LRT) set with input and J2 groups treated as 

separate variables within the condition20. 

 

We created an algorithm called Dogcatcher to identify and analyze DoGs. Briefly, 

Dogcatcher uses a sliding window approach to identify contiguous regions of transcription 

above a defined threshold. If the sliding window runs into a gene on the same strand it will 

either continue (meta read through) or stop (local read through). Dogcatcher outputs bedfiles, 

gtf’s and dataframes of all DoGs and antisense DoGs identified within a sample along with 

differential expression and genes overlapping DoGs. For improved normalization in DESeq2, 

non-significant genes are added when calculating differential expression and removed for 

visualization. The Dogcatcher algorithm and README is available at 

https://github.com/Senorelegans/Dogcatcher. For processing J2 enrichment, a modified 

version of Dogcatcher was used that applies the likelihood ratio test from DESeq2 (available at 

https://github.com/Senorelegans/heatshock_and_tdp-

1_dsRNA_scripts/J2_enrichment_Dogcatcher). 

 

DoGs identified by Dogcatcher that overlap operons on the same strand were removed. 

All of the scripts used to process the data and create figures can be found at 

https://github.com/Dogcatcher/heatshock_and_tdp-1_dsRNA_scripts  
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IV.  Mystery Miner: Application of a bioinformatic pipeline to RNA-seq data identifies novel 

virus-like sequence in human blood 
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Introduction 

 
Numerous reports suggest that microbes could play a role in neurodegenerative 

diseases. Microbial sequences are routinely identified in human RNA sequencing (RNA-seq) 

data316, which is typically acquired to assay gene expression.  The origins of these microbial 

sequences are generally unknown, although in theory disease-relevant microbes could be 
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identified if their sequences are significantly enriched in patients compared to controls.  We 

therefore sought to develop a bioinformatic pipeline that could identify microbial sequences 

over-represented in RNA-seq data from patients compared to controls. Importantly, our 

pipeline can recover both known and novel microbial sequences. 

 

Infection has been proposed to play a role in multiple neurodegenerative diseases317, 

including amyotrophic lateral sclerosis (ALS)318. ALS is the most common motor neuron disease 

in adults, with the majority of individuals dying within 3-5 years of symptom onset. The disease 

is defined by the degeneration and death of motor neurons in the brain and spinal cord, resulting 

in progressive weakness and eventually death, typically from respiratory muscle weakness319. 

Around 10% of ALS patients have a family history that suggests an autosomal dominant 

inheritance which is classified as familial ALS (fALS), with the remaining 90% of patients classified 

as having sporadic ALS (sALS)165. After decades of study, the etiology of sALS remains a mystery, 

although suspected risk factors for ALS include exposure to heavy metals, pesticides, chemical 

solvents, cigarette smoke, and unidentified factors related to US military service320–323. Along 

with these environmental risk factors, there has been a long history, with variable success, in the 

search for pathogens that might contribute to ALS246–250 and other neurodegenerative diseases 

such as Alzheimer’s disease (AD)239–241, Parkinson’s disease (PD)242–244, and multiple sclerosis 

(MS)245. 

 

 Studies on ALS primarily come from European populations and within these populations 

four genes [TAR DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated liposarcoma 



89 
 

(FUS), superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9ORF72)] 

account for 70% of fALS166. Of these four genes, C9ORF72 accounts for up to 30-50% of cases in 

fALS and 7% of sALS (in all populations)165. In C9ORF72-associated ALS (c9ALS), a 

hexanucleotide repeat expansion (HRE) occurs that can form RNA with highly stable parallel G-

quadruplex structures (G4 RNA). How neurodegeneration occurs from HRE in c9ALS is not well 

understood, but putative mechanisms include reduction of C9ORF72 expression, production of 

poly-dipeptides as a result of Repeat Associated Non-AUG (RAN) translation of repeat 

sequences, and the formation of RNA foci that may sequester RNA binding proteins176,177. 

Identifying disease modifiers is of significant translational interest, as it is currently unknown 

how patients with c9ALS (sporadic or familial) progress from asymptomatic to symptomatic 

states. Evidence is mounting that persistent immune activation can play a causative role      in 

disease progression, and some recent treatments focus on reducing the elevated 

neuroinflammation that occurs in patients with the HRE324. Indeed, one study showed that a 

lower abundance of immune-stimulating bacteria contributes to reduced inflammation and 

protection from premature mortality in a C9orf72 loss-of-function mouse model325. 

 

Numerous studies have looked for biomarkers of ALS326 using metabolomics327,328, 

neuroinflammation329,330, DNA methylation331,332, gene expression333, microRNA expression334,335 

and our previous study which analyzed protein levels of poly(GP) in c9ALS336. The search for 

pathogens using sequencing data from blood samples in ALS patients has been conducted by 

others     337–340, but previous efforts have not looked for novel pathogens. Next-generation 

sequencing (NGS) technologies have shown broad detection of pathogens in a target-
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independent unbiased fashion341–344, however, designing a microbial detection experiment is 

non-trivial considering the variety of methods345 and algorithms346 that can be applied. Our 

primary goal when designing a new pipeline was to be conservative and unbiased with regards 

to discovery and quantification of novel pathogens. Furthermore, our intention was not to 

“reinvent the wheel” for microbiota classification, and instead opt to provide an end-to-end 

pipeline that leverages data across samples to obtain biologically significant fold changes of 

microbiota between diseased and healthy subjects.  

 

While other pipelines have used reads that do not map to the host genome (unmapped 

reads) for microbial identification and quantification, these pipelines cannot be used for 

discovery as they rely on existing databases of microbial genomes234–237. One popular pipeline for 

viral classification that uses non-host reads includes ViromeScan347, which utilizes a database of 

reference viral sequences to assign reads to taxonomic categories, but is “blind” to viral 

sequences not closely related to those in the database. Thus, we opted for de-novo assembly of 

unmapped reads into contigs, similar to the strategy employed by Kraken348 and MetaShot349. 

Additionally, we use a hierarchical method to assemble unmapped reads into contigs (single 

samples, group, all) to increase the chance of assembling a correct contig from partial sequences 

that are present in multiple samples, and to remove outlier contigs present in single samples that 

are unlikely to contribute to the statistical analysis. 

 

Where MetaShot stops at providing reads assigned to taxonomical categories, we map 

reads back to contigs and provide proper library normalization for statistical quantification. A 
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similar pipeline known as IMSA238 also maps reads back to contigs, but disregards contigs that 

might be identified by translated amino acid sequence similarity using BLASTX (a set we call the 

“dark biome”) as well as subsequent contigs with no BLASTN or BLASTX hit (a set we call the 

“double dark biome”).  

 

  We validated our pipeline by using datasets (synthetic and real) with known bacterial or 

viral infections. We also examined the differences in microbial identification between polyA and 

total RNA recovery in multiple tissues, and investigated the effects of globin depletion of blood 

samples. We then used our pipeline on a novel ALS blood dataset (termed “Our Study”) as well 

as on five other published ALS datasets from blood or spinal cord samples, analyzed each dataset 

individually, and analyzed across datasets for changes in microbiota. While we did not identify 

any microbes enriched in the blood of ALS patients, we did identify and validate a novel virus-like 

sequence, demonstrating the potential of the bioinformatic pipeline we have established. 

 

Results 

 
Pipeline description 

Our novel pipeline, Mystery Miner, is written as a Nextflow pipeline. Below is a short 

overview of the Mystery Miner pipeline (Fig. IV-1). A more in-depth explanation, list of software 

and versions used, and all of the code used in this manuscript can be found at 

https://github.com/Senorelegans/MysteryMiner. 
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Raw reads were first checked for quality using FastQC then trimmed to remove both 

adaptor contamination and low quality basecalls using Trimmomatic. Trimmed reads were then 

mapped to the host genome using STAR for a fast first-pass followed by a 2nd pass with bowtie2 

for sensitivity. Unmapped reads were retained for contig assembly. Filtering out host reads made 

downstream assembly faster and required less memory. We assembled contigs from unmapped 

reads with the SPAdes assembler (with “-rna” setting). This assembler was chosen for its recent 

use in studies of microbial diversity350 and proven robustness to biological and technical 

variation351. The species each contig belongs to was identified with BLASTN using default settings, 

and the top hit for each contig was retained (a set we call “regular biome”). Contigs with no 

BLASTN hits were then filtered to remove highly repetitive regions (DUST). Next, contigs were 

retained if they had a greater than 60% pairwise alignment (LAST) between contigs assembled 

from a single sample, group/condition, or all samples (for example; contigs from groups that 

match singles are retained, we then use this new set to match with contigs from the all assembly). 

 

We then identified contigs that lacked detectable nucleotide similarity to any GenBank 

entry but showed similarity at the amino acid level using BLASTX (“dark biome”). Furthermore, 

contigs with no BLASTN or BLASTX hits were labelled as “double dark biome” (also filtered by 

DUST and LAST). Every contig in the “regular biome” and “dark biome” were then queried against 

the Joint Genome Institute Server for additional taxonomic information. As Mystery Miner is an 

agnostic tool, it cannot distinguish between true tissue or cell-associated microbes and 

experimentally introduced contamination. 
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For quantification, we mapped the non-host reads using Bowtie2 to the contigs obtained 

from SPAdes. Next, we mapped reads to contigs using samtools mpileup (default mapq score) to 

calculate the amount of reads over each base pair in a contig. We then calculated coverage on 

the contigs by summing all of the counts for each base pair in a contig and dividing by the length 

of the contig. We then calculated normalized coverage by library size using the number of 

mapped reads to the host genome. This gave us normalized coverage (NC) for a contig or binned 

normalized coverage (BNC) for multiple contigs within a species/genus, etc. To assess statistical 

differences between conditions, a Student’s t-test was calculated through NC or BNC, using the 

number of contigs or genus/species to obtain an FDR corrected adjusted p-value (q-value) using 

statsmodels in Python.  

 

Figure IV-1: Diagram of Mystery Miner Pipeline 

Reads were first checked with FastQC and trimmed using Trimmomatic (1. grey). Reads were then 
aligned to the host genome using various aligners (2. blue). Non-host (unmapped) reads were 
assembled into contigs with RNA SPAdes and regular biome contigs were identified with BLASTN 
(3. yellow). Unidentified contigs were filtered for repetitive sequences with Dust, filter by single, 
group or all with LAST, and dark biome contigs were identified with BLASTX. Double dark biome 
unidentified BLASTX contigs were sent directly to quantification (4. purple). Dark biome and 
regular biome contigs were assigned complete taxonomy using the JGI server and filtered one 
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last time to remove mammalian/host genome contigs (5. Green). Non-host reads were then 
mapped to all contigs and normalized coverage was calculated for subsequent statistical analysis. 
 
 
Validating Mystery Miner on datasets with known bacterial or viral infection 

 
 To confirm that Mystery Miner is able to recover and quantify known bacterial infections 

from sequencing data, we utilized an in vitro model of Chlamydia trachomatis infection from 

(Humphrys et al., 2016)352. In this study, epithelial cell monolayers were infected with Chlamydia 

trachomatis; and polyA RNA (6 samples) and total RNA (6 samples) were sequenced 1 hour and 

24 hours post infection (hpi). Using the Mystery Miner pipeline, out of 5.32 X 106 reads from all 

of the samples, 6.04 X 105 reads remained unmapped (~11.34%) after trimming and mapping to 

the host genome. From these non-host reads, 3,257 contigs were assembled and 1,199 of these 

contigs were identified as regular biome. An additional 27 contigs had no BLASTN hit. Of these, 

we identified 2 dark biome (BLASTX identified) and no double dark biome (no BLASTX or BLASTN 

hit) contigs.  

 

 Using Mystery Miner we successfully identified, and found significantly elevated levels, of 

Chlamydia trachomatis (BNC by species) in 24 hours post infection (hpi) samples compared to 1 

hpi samples in both polyA (q = 0.004) and total RNA (q = 0.0005). In addition to Chlamydia 

trachomatis, we identified 6 additional bacterial species and one viral species 

(Alphapapillomavirus 7) in the samples (Fig IV-2A), including significantly elevated levels of 

Mycoplasma hyorhinis contigs in total RNA samples. No significant differences were observed in 

the dark or double dark contigs. 
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 To confirm that the pipeline can detect known viral infections, we ran Mystery Miner on 

a total RNA dataset from an in vitro model of severe acute respiratory syndrome coronavirus 

(SARS-CoV) 1 or 2 infection (Emanuel et al., 2020353). In this study human epithelial Calu3 cells 

were infected with SARS-CoV-1 or SARS-CoV-2 (4, 12, or 24 hours), mock (4 or 24 hours), or 

untreated (4 hours).  

 

Out of the 2.81 X 108 reads obtained from all of the samples, 8.23 X 107 reads remained 

unmapped (~29%) after trimming and mapping to the host genome. From these non-host reads, 

42,816 contigs were assembled, of which 1,346 regular biome, 27 dark biome, and 7 double dark 

biome contigs passed the filtering steps. 

 

 Mystery Miner successfully identified both SARS-CoV-2 and SARS-CoV-1 isolates and 

found significantly elevated levels of each virus compared to controls (Fig IV-2B). Hereafter we 

refer to SARS-CoV-1 or SARS-CoV-2 infected cells as COV1 or COV2 to avoid confusion with 

recovered names of contigs. Consistent with the viruses being similar, we identified both SARS-

CoV-2 and SARS-CoV-1 in both the COV1-24hr and COV2-24hr samples when compared to mock-

24hr. However, when we compared COV2-24hr to COV1-24hr, we were able to distinguish SARS-

CoV-1 isolates from SARS-CoV-2 in the appropriate samples (i.e., SARS-CoV-2 was significantly 

elevated in COV2).  Similar results were seen in the 12 hour samples but the 4 hour samples did 

not have sufficient viral reads to detect either SARS-CoV virus. To simulate a novel virus, we ran 

Mystery Miner on versions of the BLASTN and BLASTX databases obtained before SARS-CoV-2 

was discovered and were able to properly identify SARS-CoV-2 as a bat related coronavirus354. 
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 Collectively, these data show that Mystery Miner is able to identify potential bacterial and 

viral infections, properly identify infected samples using quantification, and detect significant 

differences between infected samples and controls for bacteria, viruses, and isolates of a virus.  

 
Figure IV-2: Heatmap of binned normalized coverage for bacterial or viral infected datasets 

(A) Regular biome contigs binned by species from Humphrys et al., 2016. Time refers to 1or 24 
hours post infection (hpi) of epithelial cell monolayers with Chlamydia trachomatis (blue). 
Pulldown refers to library enrichment for polyA RNA (red) or total RNA (black). (B) Regular virome 
of contigs binned by name from Emanuel et al., 2020 for SARS-CoV-2 infected cells (COV2) (red), 
or SARS-CoV-1infected cells (COV1) (black), mock virus (orange), or untreated sample (purple). 
Time refers 4,12, or 24 hpi of Calu3 cells with indicated virus (blue). Top 10 hits per experiment 
shown for brevity. 
 

Validating Mystery Miner on a synthetic minibiome 

 
We next looked at the detection and quantification limits of Mystery Miner using 

generated read data to create a synthetic minibiome. We used Polyester355 to generate paired 

end read data (100bp read size) at various coverage levels and various fold change differences 

between two groups (Group A, Group B) with 10 samples each (20 samples total). Our synthetic 

minibiome consists of 10 human sequences and 10 sequences from non-human organisms (4 
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pathogenic, 6 commensal). The first four organisms in the synthetic minibiome are SARS-CoV-1, 

SARS-CoV-2, Chlamydia trachomatis, and Chlamydia pneumoniae. The next 6 (Mageeibacillus 

indolicus, Prevotella melaninogenica, Filifactor alocis, Mobiluncus curtisii, Rothia dentocariosa, 

Aeromicrobium marinum) are commensals that are part of the representative bacteria list from 

the Human microbiome project356. 

 

For the human sequences, we first generated a pool of human reads using the first 10kb 

of 10 scaffolds from chromosome 22 (default value for human read generation in Polyester) at 

1000x coverage with no fold change differences between groups. For non-human organisms, we 

took the first 10kb of the nucleotide sequence for the organism and generated reads at coverage 

levels of 1000x, 100x, 10x, 1x, 0.1x, and 0.01x. Lastly, we combined the 1000x coverage human 

reads separately with each level of coverage for non-human organisms and ran Mystery Miner 

(6 pipeline runs in total).  

 

We found sequences below 1x coverage did not assemble, suggesting that this is our limit 

of detection (all further data omits 0.1x and 0.01x coverage). For the SARS strains, we successfully 

identified both strains at 1000x coverage but found that with lower coverage levels, SARS-CoV-1 

was identified as a SARS-related coronavirus. This ambiguity is likely due to the 73% nucleotide 

sequence identity (aligned with CLUSTAL OMEGA357) between the first 10kb of SARS-CoV-1 and 

SARS-CoV-2. For the selected Chlamydia species (59% sequence identity of the first 10kb) and the 

rest of the commensal bacteria, we were able to successfully assemble and correctly identify 

each species at every level of coverage. 
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Along with identification, we looked at Mystery Miners ability to quantify fold change 

differences between groups (A and B) using the synthetic minibiome. For the four pathogenic 

organisms, we selected one sequence from each kingdom to have a 2 fold difference (SARS-CoV-

2, Chlamydia trachomatis). For the 6 commensals, we chose the first three species to have fold 

change differences of 1.8, 1.5, and 1.3 (Mageeibacillus indolicus, Prevotella melaninogenica, 

Filifactor alocis). For SARS, we found that at 1x coverage, the 2 fold difference of SARS-CoV-2 was 

correctly called significant (q = 5.14 e-10), but the ambiguously identified SARS-related coronavirus 

contig was not called significant (q = 0.489). At 1000x coverage, we found that the correctly 

identified SARS-CoV-1 contig was falsely called significant (q = 0.0028), this is likely due to 

ambiguous read mapping from the closely related SARS-CoV-2 sequence, as mentioned above. 

We found similar results for each coverage level (from 1x to 1000x) for the rest of the organisms 

and will subsequently use values from 1x coverage as that is the lowest level of detection. For 

Chlamydia, we found Mystery Miner successfully called Chlamydia trachomatis significant (q = 

3.57 e-10) and Chlamydia pneumoniae not significant (q = 0.709). For the commensals with FC 

differences, we successfully called each one significant [Mageeibacillus indolicus (q = 6.92 e-7), 

Prevotella melaninogenica (q = 4.91 e-5), Filifactor alocis (q = 0.017)] (Fig. IV-3). Using synthetic 

data, we conclude that Mystery Miner is able to identify organisms down to the species level and 

correctly call significant fold changes at low levels of coverage but has difficulty from ambiguity 

when reads come from highly similar sequences (72% >). 

 
 



99 
 

 

 
Figure IV-3:  Heatmap of coverage of synthetic minibiome (1x coverage). 

Heatmap of coverage for synthetic minibiome at 1x coverage. Fold change (FC) in the row name 
refers to group A (red) over group B (black). The first four rows are pathogenic organisms, the 
next 6 rows are commensals identified from the human microbiome project.  
 

Effects of library pulldown or globin depletion in RNA-seq datasets 

  
In order to compare effects of library enrichment or depletion, we compared recovered 

pathogens in a dataset that has polyA enrichment or rRNA depleted total RNA from blood or 
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colonic tissue (VonSchack et al., 2018)358. When we compared polyA RNA vs total RNA and looked 

at BNC by superkingdom of bacteria we found significantly more reads map to bacteria for total 

RNA than polyA RNA (q = 0.0349), in blood but not in colon (q = 0.11709) (Fig. IV-4). We found 

similar amounts of significant BNC by species for polyA RNA vs total RNA in blood (29) and in 

colon (26). We then looked at significant BNC by genus and found double the amount in blood 

(14) compared to colon (7), with only one significant genus (Actinomyces) found in both 

comparisons. We did not find any significant differences in coverage when we looked at the 

species, genus or superkingdom level for viruses. We conclude that library enrichment with total 

RNA compared to polyA RNA increases bacterial recovery and diversity in blood. 

 
Figure IV-4: Boxplot of normalized coverage for superkingdom Bacteria in VonSchack et al., 
2018 

Boxplot of normalized coverage of regular biome contigs binned by superkingdom Bacteria. 
Blood shows significantly more reads in total RNA vs polyA RNA compared to Colon tissue. 
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We next looked at a RNA-seq dataset from whole blood with globin depleted (GD) vs non-

globin depleted (NGD) total RNA (Shin et al., 2014359). With BNC by superkingdom, we found 

significantly increased levels in globin depleted vs. not-depleted samples for both bacteria (q = 

0.004) (Fig. IV-5) and viruses (q = 0.030) (Fig. IV-6). We also found significant differences in BNC 

by species or genus primarily from E. coli with elevated levels in globin-depleted blood RNA. We 

did not find any significant differences when we looked for viruses at the species or genus level. 

 

 
Figure IV-5: Boxplot of normalized coverage for superkingdom Bacteria in Shin et al., 2014 

Boxplot of normalized coverage of regular biome contigs binned by superkingdom Bacteria. 
Globin depletion (GD) has significantly more coverage than non-globin depleted (NGD) blood. 
 

 
Figure IV-6: Boxplot of normalized coverage for superkingdom Viruses in Shin et al., 2014 
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Boxplot of normalized coverage of regular biome contigs binned by superkingdom Viruses. 
Globin depletion (GD) has significantly more coverage than non-globin depleted (NGD) blood. 
 
Analysis of Our Study 

 
  We used Mystery Miner on our novel RNA-seq dataset of globin depleted and rRNA 

depleted total blood RNA from 120 individuals. These samples were from four subject groups 

including healthy control participants (CTL), ALS symptomatic C9ORF72 negative patients (SYM), 

C9ORF72 positive ALS symptomatic patients (C9S) and C9ORF72 positive asymptomatic 

individuals (C9A).  

 

The entire dataset contains a combined 8.64 X 109 reads.  Approximately 2.7% (2.34 X 

108) of the reads did not map to the human genome. From these non-host reads 2,976,988 

contigs were assembled and 17,047 BLASTN contigs (regular biome) were identified. A total of 

25,815 contigs had no BLASTN hit and after filtering we identified 2,980 dark biome (BLASTX 

identified) and 859 double dark biome (no BLASTX or BLASTN hit) contigs. 

 

In general, we found a modest positive correlation between library size and number of 

bacterial contigs assembled, species detected (Fig. IV-7), and genera detected for each sample as 

well as a homogenous mixture of samples with respect to disease status. No specific taxonomy 

or contig sequence correlated with participant class within the dataset. By pooling bacterial read 

counts across all of the samples, we found alpha proteo-bacteria, Actinobacteria, Firmicutes, and 

Bacteroidetes as the most highly represented taxonomies, consistent with other blood biome 

studies360 (Fig. IV-8). Most of the bacterial genera (~65%) assigned to the dark biome contigs were 
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also found in the regular biome, however this was not the case in the viral sets, as only 5% (4/78) 

of dark viral contigs were observed in the regular biome. This observation suggested that our 

pipeline might be identifying novel viral sequences.  

 
 

 
Figure IV-7: Log number of bacterial species vs Log reads for Assembly in Our Study 

 
Scatterplot where each dot is a sample from a dataset with log number of bacterial contigs 
assembled on the Y-axis and Log reads used in SPAdes on the X-axis. Samples show a modest 
correlation (Pearson's r=0.37) between library size and bacterial species recovered. Data fit with 
a regression (black line) and 95% confidence interval (gray area). 
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Figure IV-8: Log normalized coverage binned by phylum from our ALS dataset 

Log normalized coverage is summed for all of the samples and alpha proteo-bacteria, 
Actinobacteria, Firmicutes, and Bacteroidetes are the most highly represented. 

 
 
Within the dark biome contigs, we noted numerous contigs with a region of protein 

sequence similarity to RNA-dependent RNA polymerase (RdRP) from multiple RNA viruses, 

including the velvet tobacco mottle virus (first row in heatmap of Fig. IV-9). Our attention was 

drawn to the largest (~5 kb) dark biome contig hereafter labeled as “RDRP contig”. This large 

contig showed no nucleotide sequence similarity to any sequence in GENBANK, and no protein 

sequence similarity except for a long open reading frame with significant similarity to viral 

RDRPs (BLASTX P ~ 1e-26).  A phylogeny based solely on viral RDRP protein sequences places the 

RDRP contig closest to single-stranded (+) viruses of the Barnavirus, Sobemovirus, and 

Polerovirus genera (Fig. IV-10). However, given the absence of detectable similarity in this 

contig to other (non-RDRP) viral proteins of these genera, the relationship of the contig 

sequence to other virus groups is unclear, which supports the view that this contig represents a 

novel viral sequence. 
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To confirm the presence of the RDRP contig in the original samples, we designed 

primers to the RDRP contig and performed reverse transcriptase polymerase chain reaction (RT-

PCR) on seven samples, four of which had high coverage (predicted present) and three with 

zero coverage (predicted absent). We found typical levels for detection of a virus75 in the 

samples with high coverage and detected no signal above background in samples with zero 

coverage (Table IV-1). We conclude that Mystery Miner can recover true novel sequences that 

could represent previously unknown pathogens. 
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Figure IV-9: Heatmap of dark biome contigs binned by species in Our Study 

Heatmap of normalized coverage of dark biome contigs binned by species. The highest coverage 
belongs to contigs that show high similarity to velvet tobacco mottle virus. Zero coverage is dark 
blue and goes to yellow with increasing values. These samples were from four subject groups 
including healthy controls [(CTL) green], C9ORF72 negative ALS symptomatic [(SYM) purple], 
C9ORF72 positive ALS symptomatic [(C9S) blue] and C9ORF72 positive asymptomatic [(C9A) red] 
patients. Sex indicated as light blue (male) and pink (female). Top 100 species sorted by binned 
normalized coverage shown for brevity. 
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Figure IV-10: Protein BLAST phylogeny of closest hits to our RDRP contig 

A protein BLAST phylogeny of closest hits to our RDRP contig (top row) aligned with CLUSTALW2 
and built using Simple Phylogeny (both default settings). The RDRP contig closest to single-
stranded (+) viruses of the Barnavirus, Sobemovirus, and Polerovirus genera. 

 

 
 

Condition Sample 
GAPDH 

RT-PCR Ct 
Value 

RDRP 
RT-PCR Ct 

Value 

RDRP 
RNA-seq 

Normalized 
Coverage 

SYM LP00274 20.562019 36.401 1.56 

C9S LP00041 20.783213 36.346 3.39 
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C9S LP00192 20.899612 35.636 0.67 

C9A LP000180 19.982108 34.832 1.11 

C9S LP000183 20.176418 undetermined 0 

C9S LP000197 20.125161 undetermined 0 

C9A LP000157 20.062433 undetermined 0 

 
 
TABLE IV-1. RT-PCR and normalized coverage for RDP contig 
 
Quantitative RT-PCR and normalized coverage results from the 5180 bp RDRP contig. For the 
RDRP contig positive samples (top 4) with high normalized coverage and detectable Ct values and 
negative samples (bottom 3) with no normalized coverage and undetectable Ct values. GAPDH 
was used as a positive control for qRT-PCR and shows comparable levels for all samples. These 
samples were from three conditions C9ORF72 negative ALS symptomatic patients (SYM), 
C9ORF72 positive ALS symptomatic patients (C9S) and C9ORF72 positive asymptomatic 
individuals (C9A). 
 

Analysis of published ALS datasets 

 
 We next sought to explore whether similar results would be obtained from other ALS 

datasets. To this end, we examined five other publicly available ALS datasets, consisting of two 

that used total RNA from blood (Linsley et al., 2014361, Gagliardi et al., 2018337), and three 

datasets from spinal cord (Brohawn et al., 2016362, Ladd et al., 2017363, Brohawn et al., 2019364). 

We have provided a summary table of datasets (Table IV-2). As we observed in our study, we first 

noted that increased library size correlated with an increased number of bacterial contigs 

assembled, species detected, and genera detected (Figure IV-11).  
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Name Groups # Samples Tissue Pulldown 

Humphrys2016 1- or 24-hours post 
infection with 
Chlamydia 
trachomatis 

12 Cultured epithelial 
cell monolayers 

PolyA 
Total RNA 

VonSchack2018 PolyA or Total RNA 
from blood or 
colon 

16 Whole Blood 
 Colon 

PolyA RNA  
Total RNA 

Shin2014 Globin depleted  
Not globin 
depleted  

24 Whole Blood Total RNA 

Emanuel2020 Severe acute 
respiratory 
syndrome 
coronavirus 1 or 
2 infection 
Controls 

18 Calu3 cells Total RNA 

Our Study C9ORF72 negative 
ALS, 
C9ORF72 positive 
and symptomatic 
ALS, 
C9ORF72 positive 
asymptomatic 
participants 
Controls 

120 Whole Blood Total RNA 
hemoglobin 
and rRNA 
depleted 

Linsley2014 ALS 
type 1 diabetes, 
sepsis, 
multiple sclerosis 
patients before and 
24 hours after the 
first treatment with 
IFN-beta 
Controls 

134 Whole blood Total RNA 

Gagliardi2018 Sporadic ALS, 
ALS with 
mutations in 
FUS, SOD1, 
TARDBP 
Controls 

20 Peripheral blood 
mononuclear cells  

Total RNA 
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Brohawn2016 ALS 
Controls 

15 Cervical spinal 
cord 

Total RNA 
rRNA depleted 

Ladd2017 ALS 
Controls 

10 Laser capture 
microdissection 
(LCM) to isolate 
cervical spinal 
cord motor 
neurons  

Total RNA 

Brohawn2019 ALS, Alzheimer’s 
disease (AD), 
Parkinson’s 
disease (PD) 
Controls 

53 Cervical spinal 
cord 

Total RNA 

 
 
TABLE IV-2. Studies used in the Mystery Miner analysis 
 
The first three studies are only used to validate our pipeline. The six subsequent studies are ALS 
related from both blood and spinal cord. 
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Figure IV-11: Log number of bacterial species vs Log reads for Assembly for ALS Datasets 

Scatterplot where each dot is a sample from a dataset with log number of bacterial contigs 
assembled on the Y-axis and Log reads used in SPAdes on the X-axis. ALS datasets show a high 
correlation (Pearson's r = 0.88) between library size and bacterial species recovered. Data fit with 
a regression (black line) and 95% confidence interval (gray area). 

 

We then looked at the total overlap of genus or species to determine if there are 

similarities in recovered microbial or viral sequences between datasets. For genus in the regular 

bacteriome, our dataset had the highest number of unique genus (185), followed by Ladd et al., 

2017 (117), and Gagliardi et al., 2018 (38). The highest number of overlapping bacterial genus 

was between our dataset and Ladd et al., 2017 (133) followed by the intersection between our 

dataset, Ladd et al., 2017 and Gagliardi et al., 2018 (61) and there was a modest overlap (24) for 
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9/10 datasets (Fig. IV-12). We observed roughly the same trend in the regular bacterial biome at 

the species level and in the dark bacterial biome. In contrast, the regular virome of each dataset 

was relatively unique with very low amounts of overlap (<= 3) between datasets (species and 

genus shows a similar pattern). Interestingly, the highest overlap for species in the dark virome 

was between our dataset and Ladd et al., 2017 (13), one of which is similar to RDRP viruses, 

although the contigs in Ladd’s data were not similar to the velvet tobacco mottle virus in our 

dataset.  

 

In addition to comparing datasets using taxonomy, we also compared contigs between 

datasets for nucleotide similarity (> 70%) using LAST. We found that in general, datasets in the 

regular biome with the largest amount of contigs have the most overlap. Unsurprisingly, in the 

dark biome we observed less overlap by nucleotide similarity and that our RDRP contig does not 

share nucleotide similarity with contigs from any dataset. In addition, we also compared the 

nucleotide similarity of double dark biome contigs and found there is not a large percentage of 

similar contigs between datasets. 



113 
 

 
Figure IV-12: Upset plots of overlapping genus in the regular bacteriome between datasets 

Upset plots are Venn diagram-like plots. A set refers to a dataset used in this study and each set 
is on a row with total amounts in a set as a blue bar plot on the left (ordered by set size). The 
black histogram on top shows the counts that are in the intersection of sets (a single dot for one 
dataset or connected dots for overlap of multiple datasets). Intersections less than 4 are removed 
for visualization purposes.  
 
Meta-analysis between datasets 

 
Since our dataset and many others had few to no significant comparisons for ALS vs 

control groups within each dataset, a meta-analysis between datasets using this criteria would 

be difficult. As a second pass analysis we created a less stringent filtering method in order to 

compare the presence of microbes for each group between datasets (ALS vs. ALS; or controls vs. 

controls) (Fig. IV-13). We assigned a contig to a condition if ≥ 2 samples from that condition 
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contain at least 90% of the summed normalized coverage (from all samples) to the contig. This 

filtering greatly reduced the number of comparable genus/species for each dataset and, for 

example, reduced the genus of the regular bacteriome in our dataset from 305 for all samples to 

33 (SYM:8, C9S:6, C9A:2, CTL:17). 

 

When we looked at ALS or control contigs in the regular bacteriome, the highest number 

of unique genus or species was from Ladd et al., 2017, and in general there was a small amount 

of overlap between datasets (≤1 for ALS or ≤ 8 for controls) (Fig. IV-13). When we looked at genus 

in the dark bacteriome we saw no overlap for ALS contigs and low overlap (≤ 1) between control 

conditions (species was similar). In the regular virome there was no overlap between datasets 

and only our study (one contig from ALS) and Ladd et al., 2017 (three from ALS, five from controls) 

had contigs that passed the filter (similar values for species). When we looked in the dark virome 

by genus there was no overlap between datasets, and our dataset had only one genus 

(Sobemovirus from controls) with the rest coming from Ladd et al., 2017 (18 from controls, 5 from 

ALS). In conclusion, despite our conservative and loose approaches, we did not find any 

convincing evidence in ALS samples that the presence (or lack of presence) of an organism (or 

multiple organisms) was different compared to control samples. 
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Figure IV-13: Upset plots of overlapping genus between datasets in the regular biome for ALS or 
controls. 

Upset plots are Venn diagram-like plots. A set refers to a contig that was assigned to a condition 
from a dataset. Each set is on a row with total amounts in a set as a blue bar plot on the left 
(ordered by set size). The black histogram on top shows the counts that are in the intersection of 
sets (a single dot for one dataset or connected dots for overlap of multiple datasets). A. ALS 
contigs in the regular bacteriome. B. Control contigs from the regular bacteriome. 
 

Discussion 

 
We have created Mystery Miner to search for and quantify known and unknown microbes 

in RNA-seq datasets as a tool for researchers to study dysbiosis and identify infectious agents. 

We validated the pipeline by recovering and quantifying Chlamydia and SARS-CoV reads from 

RNA-seq datasets from intentionally infected cells. Interestingly, we also identified Mycoplasma 

reads in the Chlamydia dataset, suggesting that Mystery Miner may also be able to identify 

unsuspected bacterial infections or contamination. Next, we created a synthetic minibiome of 

two different Chlamydia species and SARS strains, along with 6 representative bacteria from the 

human microbiome to investigate the sensitivity of Mystery Miner with regards to species and 

strain detection and quantification of small fold changes at low coverage. We find that the 

pipeline is able to recover and quantify significant fold changes for the bacterial species but has 
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difficulty distinguishing reads that come from highly related sequences. We also use published 

data to investigate the difference of polyA vs total RNA recovery of bacterial species in multiple 

tissues. Perhaps surprisingly, we did not see a consistent difference in the recovery of bacterial 

reads between the two types of RNA-seq libraries, considering that bacterial transcripts are not 

expected to be polyadenylated.  However, it is well-recognized that polyA selection is imperfect, 

and libraries constructed from polyA-selected RNA routinely contain transcripts thought not to 

be polyadenylated (e.g., rRNA).  We also found increased recovery of bacterial species with globin 

RNA depletion in blood. This could be the result of an effective increase in read depth for bacteria 

when not sequencing globin, or an increase in contamination from the globin depletion step. We 

stress that our bioinformatic approach alone cannot distinguish between contamination and the 

true existence of microbial sequences in human tissue. 

 

We then used Mystery Miner on a novel ALS blood dataset (Our Study) consisting of 8.64 

X 109 reads.  This dataset was generated from whole blood total RNA that was depleted for both 

ribosomal and globin transcripts. It encompasses samples from controls, participants with a 

C9ORF72 hexanucleotide expansion (symptomatic and pre-symptomatic), and C9ORF72 negative 

ALS patients. We found no statistical difference in microbial sequence read coverage between 

controls and any class of ALS patients, examining either individual contigs or using various 

taxonomical binning approaches. We also did not detect any batch effects or obvious age- or sex- 

biases in the recovery of microbial reads. Overall, we found no evidence of blood microbial 

sequences contributing to either C9ORF72 negative ALS or symptomatic patients harboring the 
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C9ORF72 hexanucleotide expansion. However, ALS is a CNS disease, so our findings in these blood 

samples do not necessarily preclude a role for microbes in this disease.  

 

A unique aspect of Mystery Miner is that it tracks non-human reads that do not have 

significant BLASTN hits in GenBank. We were intrigued by the identification of a large contig 

(>5kb) in the dark biome of our ALS dataset that showed protein sequence similarity to RNA-

dependent RNA polymerases, the essential replicase of RNA viruses. To validate that this virus-

like sequence was not an artifact of contig assembly or a contaminant introduced during library 

construction or sequencing, we used RT-PCR of the original patient samples to demonstrate that 

this sequence was present in positive samples identified through the RNA-seq analysis and not 

detectable in negative samples.  We cannot extrapolate from this specific example to determine 

what fraction of the "dark" and "double dark" sequences represent true novel microbial 

sequences present in human blood, but we note that analysis of human cell free blood DNA has 

reported the identification of thousands of novel bacterial sequences365. We suggest that 

Mystery Miner is a generally useful tool for the identification of novel microbial sequences in 

RNA-seq data. 

 

To extend our analysis we processed publicly available blood and spinal cord ALS datasets 

through our pipeline. As observed in our dataset, library size generally correlated with number 

of bacterial contigs assembled and number of bacterial genera/species recovered. When the 

microbial sequences we found in our dataset were compared to the other datasets we found 

similar genera/species and, not surprisingly, larger datasets generally had greater overlap. One 
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dataset (Ladd et al.,2017) yielded comparable recovery of bacteria and viruses for the regular 

biome but a far greater recovery bacteria and viruses in the dark biome compared to all the other 

datasets. This study used laser capture microdissection (LCM) to isolate cervical spinal cord motor 

neurons and had comparable read amounts per sample to other studies and was conducted in 

the same laboratory as two other studies (Brohawn et al., 2016, Brohawn et al., 2019). We are 

unsure why this dataset yielded a much larger dark biome compared to the other datasets. 

Potentially these differences are a byproduct of using LCM to acquire samples. 

  

We then analyzed several publicly available ALS datasets for statistically significant 

differences between recovered microbial sequences in ALS and control samples.  Only one 

dataset (Gagliardi et al., 2018) had any significant microbial sequence differences between 

control and ALS samples, specifically ALS patients with FUS or SOD1 mutations.  However, the 

sample number in this sub-study was small (N = 2-3), and in the case of the SOD1 patients the 

excess microbial reads were in the control samples. In the absence of additional information (e.g., 

batch assignments for the samples) it is difficult to conclude that these sequence/sample 

correlations are meaningful. Finally, we compared identified microbial sequences in the control 

and ALS samples across the datasets and did not identify any genera/species that were 

preferentially recovered in either sample type. 

 

Using our bioinformatic analysis pipeline Mystery Miner, we have not identified an 

association between ALS pathology and sequences corresponding to known or unknown 

microbial species. However, there are intrinsic limitations in using "repurposed" RNA-seq data to 
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assay tissue-associated microbial sequences, including the relatively small number of non-human 

reads (<1% of total) upon which the analysis is based. This limited sequence signal could preclude 

identification of rarer microbes. Perhaps more problematic is the possibility that contaminating 

sequences obscure true tissue-associated microbial sequences.  Any candidate microbes 

identified using Mystery Miner that correlate with human phenotypes will necessarily require 

independent validation. Despite these limitations, we believe Mystery Miner will be a useful tool 

for future researchers investigating known and unknown microbes that could contribute to 

disease, as our analyses have shown it to be sensitive to bacterial/viral agents in sequencing data. 

 

Materials and methods 

 
Blood Collection and RNA Extraction 

 
A total of 120 RNA whole blood samples constitutes Our Study, which included 30 healthy 

controls (from general population that do not have blood relatives suffering from ALS, CTL), 30 

pre-symptomatic C9ORF72 mutant carriers (C9A), 30 symptomatic C9ORF72 ALS cases (C9S), and 

30 symptomatic C9ORF72-negative ALS cases (SYM). PAXgene blood RNA tubes were collected at 

Mayo Clinic Jacksonville and at University of Miami.  All 120 RNA samples selected for RNA-seq 

were received and processed at Mayo Clinic Jacksonville using PAXgene blood RNA kit following 

manufacturer’s recommendations (Qiagen). Blood RNA was of high quality, assessed in an Agilent 

Bioanalyzer (Agilent), with RNA integrity values ranging from 7.4 to 9.8, with a median value of 

8.7. RNA samples were then sent to The Jackson Laboratory for globin depletion, library 

preparation and sequencing of total blood RNA. 
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Globin Depletion 

  
Due to the abundance of large haemoglobin RNA transcripts present in the blood, a globin 

depletion step, using the Ambion GLOBINclear kit (AM1980), was performed before sequencing 

of the blood RNA samples in order maximize coverage on non-globin genes. In brief, one 

microgram of total RNA was used as starting material, and specific biotinylated oligos were used 

to capture globin mRNA transcripts. The capture oligos were hybridized with total RNA samples 

at 50°C for 30 min. Streptavidin magnetic beads were then used to bind to the biotinylated 

capture oligos hybridized to globin mRNA by incubating at 50°C for 30 min. The magnetic 

streptavidin beads-biotin complex were then captured to the side of the tubes by a magnet, and 

the resulting supernatant is free of globin mRNA. The globin depleted RNA was further purified 

by RNA binding beads and finally eluted in elution buffer. The resulting RNA free of >95% globin 

mRNA transcripts was then processed for next generation sequencing. Of note, to assess the 

efficiency of the globin RNA depletion, 10% of the samples processed were selected randomly 

and amplified using a Target-Amp Nano labeling kit (Epicentre). Samples were normalized to 100 

ng input and reverse transcribed. First strand cDNA was generated by incubating at 50°C for 30 

min with first strand premix and Superscript III. This was followed by second strand cDNA 

synthesis through DNA polymerase by incubating at 65°C for 10 min and at 80°C for 3 min. In-

vitro transcription was then performed at 42°C for 4 hours followed by purification using RNeasy 

mini kit (Qiagen).  
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  Due to the large number of samples, the globin depletion step was performed in two batches. 

We provided guidelines on how samples would be divided among the batches and also for how 

samples would be grouped in the sequencing runs in order to minimize technical variability. The 

Jackson Laboratory personnel were blinded to the identity of the samples.  

 RNA-seq of total blood RNA (globin and ribosomal RNA depleted) was performed in an Illumina 

HiSeq4000 with >70 million read pairs per sample (100bp read lengths). Raw reads were then 

sent back to us for bioinformatics analyses. 

 
Quantitative RT-PCR for blood RNA samples 

 
A total of 500 ng of total blood RNA was used for reverse transcription polymerase chain 

reaction (RT-PCR), using the High Capacity cDNA Transcription Kit with random primers (Applied 

Biosystems). Quantitative real-time PCR (qRT-PCR) was performed using SYBR GreenER qPCR 

SuperMix (Invitrogen). Samples were run in triplicate, and qRT-PCRs were run on a QuantStudio 

7 Flex Real-Time system (Applied Biosystems).  

 
List of primers and their sequences in this study:  

Primers targeting the novel RDRP contig from our study 

RDRP forward 5’-GCTGTCAAATCGGTTTCCAAC-3’;  

RDRP reverse 5’-CTGCCTTCGTCATCTTGGAG-3’;  

Primers targeting highly expressed control regions 

GAPDH forward 5’-GTTCGACAGTCAGCCGCATC-3’;  

GAPDH reverse 5’-GGAATTTGCCATGGGTGGA-3’. 
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Transcriptomics 

For downloading the pipeline and detailed instruction for running the pipeline please read 

the README at https://github.com/Senorelegans/MysteryMiner. All data in this study were 

processed identically using the pipeline. 

 
Statistical Analysis 

 
To assess statistical differences between conditions, a two tailed Student’s t-test was 

calculated using normalized coverage for contigs or binned normalized coverage for 

species/genus, etc. The number of contigs or genus/species is used to obtain an False discovery 

rate corrected (using the Benjamini/Hochberg method) adjusted p-value (q-value) via 

statsmodels in Python. Cutoff for statistical significance is less than an q-value of 0.05 unless 

otherwise stated.  

 
Data availability 

 
Raw sequencing data for Our Study dataset is available in the NCBI Sequence Read Archive 

under the accession number PRJNA715316. 

All other datasets are publicly available, and all of the code used in this manuscript is 

available at https://github.com/Senorelegans/MysteryMiner. Supplemental material available at 

https://figshare.com/s/71d8bbdd30c72f6557d2.  
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V. MaDDoG 

 
Introduction 

The methods to accurately discover and quantify Downstream of Gene (DoGs) 

expression are still in their infancy. Initial efforts used a sliding window approach that looked at 

expression levels in the last 1kb of a gene compared to subsequent downstream windows 

stopping when coverage was less than 1%190. The first program dedicated to DoG detection was 

DoGFinder and used a similar sliding window approach along with down sampling of BAM files 

for calculating differential expression of genes366. Dogcatcher followed soon after and uses a 

similar approach to DoGFinder but also quantifies antisense downstream of gene (ADoGs), 

previous of gene (PoG), and antisense previous of gene (APoG) transcripts367. The most recent 

algorithm is automatic readthrough transcription detection (ARTDeco), which uses arbitrary 

lengths (15kb in humans) to define upstream or downstream regions in order to compare their 

expression levels to the expression levels in the gene body. In addition, ARTDeco removes read-

in counts (reads likely coming from transcripts originating outside of the gene body) from genes 

which might falsely be called as differentially expressed368.  

However, various improvements that can still be made to these algorithms. One could 

improve the estimation of DoG lengths by using a Hidden Markov Models that doesn’t depend 

on arbitrary window lengths369. Additionally, Bayesian approaches such as Bayesian online 

changepoint (BOC) detection could be used to differentiate noise from true transcription in 

DoG regions370,371. BOC seeks to identify abrupt changes (usually of the mean) in sequential 

data, e.g. change points (or switch points), typically with a known number of latent states (Fig. 



124 
 

V-1). Modifying this Bayesian approach, I have created an algorithm called Multi analysis of 

differential expression of downstream of gene regions (MaDDoG), that partitions downstream 

of gene regions based on changes in read-depth (using a rolling average from a group of 

samples) with subsequent differential expression analysis of each section (between groups). 

Importantly, MaDDoG is a tool that can be applied to any area of the genome but is built to 

primarily classify DoG regions. 

  

Figure V-1: Example of Bayesian online changepoint detection 

Example with synthetic data (xt is an observation in sequence, typically read depth) cut into 
three segments (g1, g2, g3) with two latent states, described by horizontal dashed lines (state 1 
= g1, g3 ; state 2 = g2) by two changepoints (dashed vertical lines). 
 

Results 

 
Pipeline description 

 
MaDDoG seeks to identify the latent states within previously identified DoGs, on the 

presumption that within a latent state read count depth is variable but that the identified 

segments will correspond to interpretable transcripts.  Furthermore, MaDDoG then uses these 

regions to inquire      about differential signal, with the overall goal of classifying DoGs based on 
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their changes observed between two conditions.  In implementation, MaDDoG is written as a 

series of python scripts with an optional Nextflow pipeline to parallelize across chromosomes. 

MaDDog can be run on any section of the genome but a typical application takes DoG regions as 

input, typically obtained from Dogcatcher. Below is a short overview of the MaDDoG pipeline 

(Fig. IV-1). On a per sample basis reads are binned across the entire genome (default 50bp 

windows) then grouped by condition taking the average at each window. Dogcatcher is then 

applied, this consists of flattening the annotation to remove overlapping genes, selecting a 

minimum read depth per gene, and using sliding windows with cutoffs for the end of a gene 

(default stops when DoG is 1% read depth of gene). The result of Dogcatcher is the identification 

of candidate DoG regions which are then used as input to MaDDoG.  MaDDoG first applies a 

convolution window (rolling average) to smooth reads (default 500bp windows), as smoothing 

reduces the impact of towers and other outlier anomalies often seen in sequencing data. 

MaDDoG then applies multiple Bayesian change point analysis models (e.g. different numbers of 

latent states) and Bayesian Information Criteria (BIC) to select a preferred model (explained in 

further detail below).  To determine whether regions identified change between two conditions, 

MaDDoG adds all changepoints from both experiments and clusters the change points, and finally 

takes the resulting regions sectioned by change points and applies differential expression analysis 

(default DESeq2). I will now use a toy example of synthetic data to clarify the methodology, 

focusing on the Bayesian change point model, BIC model selection, and inference of differential 

signal.   I will then illustrate the use of MaDDoG on real data to clarify each step of the pipeline, 

using visualizations where appropriate. 
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Figure V-2: Diagram of MaDDoG pipeline 

 
On a per sample basis reads are binned across the entire genome then grouped by condition 
taking the average at each window (1. grey). Dogcatcher is then applied which consists of 
flattening the annotation to remove overlapping genes, selecting a minimum read depth per 
gene, and using sliding windows with cutoffs for the end of a gene (2. blue). After input regions 
are obtained, MaDDoG first applies a convolution window to smooth reads (brown), applies 
multiple Bayesian change point analysis models with Bayesian Information Criteria (BIC) to select 
a model (green), adds all changepoints from both groups and clusters the points (purple), and 
finally takes the regions sectioned by change points and applies differential expression analysis 
(red). 
 
 
Toy example of Bayesian change point and BIC model selection 

 
To further clarify the Bayesian change point model implemented in MaDDoG, I will walk 

through a synthetic toy data example – with three latent states and signal in four regions of 

variable length (e.g. three switch points). I first generate synthetic data with different mean 

signal lasting a different number of durations (variable lengths). To do this I use the Poisson 

distribution (rate = mean) to generate observed values (e.g. pseudo read counts) using three 

different means (40, 5, 20) over four durations (10, 20, 30, 40) (e.g. positions 1-10 at 40, 
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positions 11-30 at 5, positions 31-60 at 20, and finally positions 61-100 at 40 again) (Fig. V-3). 

 

Figure V-3: Toy example of generated data 

Data generated using the Poisson process with three different means (40, 5, 20, 40 again) over 
four durations (10, 20, 30, 40) (or 1-10, 11-30, 31-60, 61-100). Note the fourth duration reuses 
the first latent state (e.g. it’s at 40 read depth). Vertical colored dotted lines indicate location 
when the mean (or rate) changes. 
 
 Assuming the number of latent states is known (often unrealistic), I built a hidden 

Markov model (HMM) using the Poisson rates (the mean in our case) as emissions. Essentially 

this imbeds the Poisson process into a simple HMM and allows us to predict the true mean 

values. I will not go over the HMM model in detail here and instead refer the reader to this 

great review on their applications in biology369. The model is initialized with uniform 

probabilities for the starting state, uniform probabilities of transitioning from one state to 

another, and a log normal distribution for choosing initial means. The model is then run using 
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an optimizer (default Adam372 with learning rate = 0.01) to compute the maximum a posteriori 

fit to the observed count data to predict the true means. Once I have fit the model (predicted 

the means), I can then predict the hidden latent state at each time step by using the forward-

backward algorithm (a common step in an HMM) to obtain posterior probabilities for each 

state at each time point (Fig. V-4). I then select the best state for a time point by choosing the 

latent state with the highest posterior probability at that time point (Fig. V-5). 
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Figure V-4: Posterior probabilities of toy data 

Posterior probabilities of the toy data example. State 1 has a high probability of occurring early 
and later in the sequence. Notice the horizontal line at posterior probability 1.0 runs from 
positions 0 to 9 and then drops through position 11 before dropping to zero until position 61 
where it returns to a high posterior (1.0). State 2 is predicted to occur after the first drop, e.g. 
between positions 12 and 30. State 3 occurs near the middle of the sequence (positions 31 to 
60), but also has a low probability of occurring at positions 9-11 – the same positions where the 
posterior probability of state 1 were reduced. Thus, the best state path (shown in Figure V-5) 
most supported is state 1 (positions 0-11), state 2 (positions 12-30, state 3 (positions 31-60), 
followed by a return to state 1 (61 to end of region).  
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Figure V-5: Inferred latent mean over time 

The inferred latent mean (or rate) over time is chosen by selecting the latent state with the 
highest probability for that time point. 
  

Typically, the true number of latent states is unknown. Theoretically, the number of 

latent states could be infinite (because there is no upper bound on counts), but with increased 

number of latent states you will essentially overfit the model to the data i.e., each count level 

eventually becomes a latent state. Therefore, I need a method for selecting the best number of 

latent states that strikes a balance between accuracy and overfitting.   

 

Here we simply generate all possible latent states (within some range) to evaluate as 

possible best models. Since the number of latent states is unknown, I must first decide on the 

max number of latent states (upper bound) to generate models (each model is fit with an 

increasing number of latent states), then fit parameters for each model simultaneously and 

sum over the priors for each model to compute the marginal likelihood for all models (Fig. V-6). 



131 
 

The most practical way to choose the maximum number of latent states comes from domain 

knowledge and empirical testing. In practice when using MaDDoG on actual count data, I find 

that the marginal likelihood plateaus around 6 (default max in MaDDoG), making it a good 

choice for max latent states for this application.  

In general, the best model is the simplest one (lowest number of states) that still has a 

reasonable marginal likelihood compared to more complex models. For speed and practicality, I 

select the best model using Bayesian information criteria (BIC), specifically using Bayes 

Factor373, which is a ratio of the marginal likelihood of one model over the marginal likelihood 

of another model. I start with the least complex model then use the arbitrary value 1.3 as our 

threshold for Bayes Factor when deciding to select a more complex model (generally, Bayes 

Factor values of 1 to 2 are strong evidence to favor another model)373. In our toy example, the 

Bayes Factor is 1.33 at model 3 and does not reach above .98 on more complex models, so 

model 3 is chosen as our best model and agrees with the true number of hidden latent states 

for our toy example (Fig. V-7). 
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Figure V-6: Marginal likelihood for 6 latent states of toy data 

Plot showing the marginal likelihood (y-axis) for the multiple models, differing in number of 
latent states (x-axis), fit using the toy data. Six models are built (default maximum is 6), with 
each number indicating the number of latent states in that model.  
 

 

Figure V-7: Model selection for toy data 

Plot showing the inferred levels (horizontal lines) for each fit model. To select the best model 
(model 3, in green), a Bayes Factor is implemented to select the simplest model above the 
chosen threshold (default 1.3). Note: State models 4-6 appear identical in the figure to the 3-
state model but have multiple latent states that are very close in proximity (i.e., 4-state model 
has latent states 39, 5, 20, 40). 
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After choosing the best model and the corresponding switchpoints, switchpoints from 

the treatment and controls are combined for clustering. To illustrate clustering between 

conditions, I have kept the toy data used above (now labelled “control”) and generated 

additional synthetic data, labeled “treatment” that extends past where the control sample 

stopped, but has shorter durations to the 3rd, 4th, and 5th switch points (see Fig. V-8 A). For 

clustering, I use DBSCAN374 that does not require the user to specify the number of clusters a 

priori (compared to K-means). The most important parameter of DBSCAN is called “eps”, which 

is the minimum number of points required to form a dense region (e.g. what is the minimum 

width of a latent state), I set this to 0.3 which is slightly more conservative than the default 

(0.5). In our toy example, I see that the 2nd and 3rd switchpoints from each sample form two 

clusters (Fig. V-8 B). Next, I take the mean of each cluster to obtain our final switchpoints (Fig. 

V-8 C). Finally, I use these last switchpoints to partition the region and input the segments into 

DESeq2 for differential expression analysis. 
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Figure V-8: Clustering switchpoints 

(A) Toy data generated for “control”, (in grey) and “treatment” (in red) that extends past where 
the other sample stopped, but has shorter durations to get to the 3rd, 4th, and 5th switch point. 
(B) For clustering, I use DBSCAN, which makes clusters from the 2nd and 3rd switchpoints from 
each sample (each color is a cluster). (C) Finally, I take the mean of each cluster to obtain the 
final switchpoints. Switchpoints are moved to the X-axis and the inferred rate (mean) is 
removed for visualization purposes. 
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Application of MaDDoG to select genes from Vilborg et al., 2015 

 
To identify candidate loci for evaluation of MaDDoG, I first ran Dogcatcher with very 

loose settings (settings in methods below) to overcall DoG regions. I did this because MaDDoG 

cannot extend the length of input DoGs but is able to “shorten” DoGs because regions of 

transcriptional noise between two samples will not be differentially expressed.  Here I describe 

the manual evaluation of the results of MaDDoG on three hand selected loci. 

 

The first gene I looked at is CXXC4, which is also an example DoG from Vilborg et al., 

2015 (Fig. V-9 A). At this locus, I identify seven switch point regions (Fig. V-9 B) and all of these 

regions are significantly differentially expressed (Padj < 0.05) in the KCL treated samples 

compared to controls. In the KCL sample, the signal is much stronger in the DoG region and 

there are clearly multiple “levels” of transcription (by manual inspection). However, after 

collapsing neighboring segments that are consistently differentially expressed (e.g. called by 

DEseq2 in the same direction), the entire region would be considered differentially expressed. 

Therefore, the most likely explanation for this region is that there is not a DoG transcribed for 

this gene in the control sample, as every section is differentially expressed.  Why the treatment 

(KCL) DoG has numerous apparent levels is unclear, but could arise from either biological or 

technical sources. 

 

Next, I looked at NAT8L (Fig. V-9 C), which appears to have a DoG in both the treatment 

and control samples and identify only two switch points at the end of either the treatment or 
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control sample (Fig. V-9 D). This highlights the algorithms flexibility, as it chooses the simplest 

partitions when there is low variance in the mean across the DoG. In addition, I see that for 

NAT8L, there is no differential expression in the first region, suggesting that the DoG is at a 

comparable expression level in both the control and treatment, but likely the control sample 

DoG ends 500bp after the end of the gene. Thus, the data suggests that at this gene the DoG is 

merely lengthened in the KCL sample.  

 

Finally, I looked at SYNPO2 (Fig. V-9 E). Here I see that the first two sections are not 

differentially expressed, followed by two differentially expressed sections unique to the 

treatment, ending with a non-differentially expressed section. I also note that the expression 

pattern in these DoGs (especially the treatment DoG) appear to show exon-intron boundaries 

which are being called as switch points (Fig. V-9 F), suggesting the possibility of treatment 

specific splicing that is not currently annotated.  Given that the last section is not differentially 

expressed, this suggests the region is merely transcriptional noise and I posit that the true 

ending of the treatment DoG happens at the end of the fourth section. 
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Figure V-9: Select DoGs from Vilborg2015 
 
Three examples showing the CXXC4 locus (A,B), the NAT8L locus (C,D) and the SYNPO2 locus 
(E,F). IGV (version 2.6.3, and hg38 genome) plots (A,C,E) on left show tracts of data with top 
two tracks: histograms of normalized reads for one of the control samples (red: minus strand; 
blue: plus strand) and one of the KCL treated samples (orange: minus strand; light blue: plus 
strand). The bars on the third track indicate segments that are statistically differentially 
expressed (green) or not differentially expressed (blue), as called by MaDDoG. The fourth 
(bottom) track shows the gene annotation (blue). Switch point plots (B,D,F) on the right show 
the observed counts (treatment: grey; control : red) and various random colors for each switch 
point. Note: all switch point plots show the gene 5’ to 3’ from left to right regardless of strand 
depicted in the IGV plots.  Windows are 50bps in size. 
 
Using MaDDoG for intron retention or alternative exon discovery 

 
Although MaDDoG is primarily built to handle downstream of gene regions, one other 

potential application of MaDDoG is to run it on gene regions to look for intron retention, 

alternative exon usage, or incorrect annotation. As most exons are well annotated, this also 

Figure  STYLEREF 1 \s V SEQ Figure \* ARABIC \s 1 9: Select DoGs from Vilborg2015 
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serves as a secondary validation of the capabilities of the method.  To this end, I hand selected 

one sample from Vilborg et al., 2015, and then chose three genes that appeared the cleanest 

with regards to exon-intron boundaries (KAT5, DRAP1, POLA1). For all genes I chose to skip the 

first exon because of transcriptional noise. 

 

The first gene I looked at was KAT5, as I found this gene to have the cleanest exon-

intron boundaries up until the 8th exon (before annotated alternative exons). I chose only to 

analyze a subregion of the gene (green bar in Fig. V-10 A), to see if our algorithm can call 

switchpoints accurately at exon boundaries.  MaDDoG selected two latent states, although the 

three-state model is probabilistically similar and highlights exon 4 (around window 20) as an 

alternative exon (and possibly exon 2) (Fig. V-10 B). Next, I looked at DRAP1 (Fig V-11 A), where 

MaDDoG selects a three-state model as the best model, most likely because there is alternative 

exon usage (or incomplete annotation) before exon 4 (around window 15).  For both KAT5 and 

DRAP1, the switch point boundaries correspond well to the annotated exons, suggesting that 

MaDDoG is finding reasonable transitions.  Finally, I looked at POL1A, which is highly 

transcribed, has a high quantity of short exons, and is a much longer region compared to the 

first two genes (~30kb vs 2kb for KAT5) (Fig V-12 A). I find that the Bayesian switch point model 

has low confidence in any model being correct (Marginal likelihood for all POLA1 models are 

less than -5000, compared to the lowest being -500 for KAT5), likely due to the added 

complexity from variance in transcriptional levels of exons, length, and transcriptional noise in 

intronic regions (Fig V-12 B). 
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Figure V-10: Bayesian switchpoints of KAT5 

(A) IGV screenshot of KAT5 (going from left to right). Green bar indicates the region on which 
MaDDoG was applied. (B) State model selection showing the two latent state model (in green) 
as the best model. 

 
 



140 
 

 
Figure V-11: Bayesian switchpoints of DRAP1 

 
(A) IGV screenshot of DRAP1. Green bar indicates the region on which MaDDoG was applied. (B) 
State model selection showing the three latent state model (in green) as the best model. 
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Figure V-12: Bayesian switchpoints of POLA1 

 
(A) Partial IGV screenshot of POLA1. Green bar shows the region over which MaDDoG was 
applied. (B) State model selection showing the four latent state model (in green) as the best 
model. 

 
Global results of MaDDoG from Vilborg et al., 2015 

 
Subsequently, I applied MaDDoG to all DoGs called by Dogcatcher in the Vilborg et al., 

2015 dataset, primarily to evaluate the runtime feasibility of whole genome analysis. Since the 

amount of switchpoints in a DoG is not biologically interpretable for thousands of DoGs, I 

decided to focus on DoGs that have all segments significant for the same condition (indicating 

the whole region is significantly different), DoGs with or without a significant first segment 

(indicating both conditions have DoGs of different lengths), and DoGs with or without a 

significant last segment (indicating that the longest DoG is overcalled and likely transcriptional 

noise). Out of 4224 DoGs with at least one significant segment, I removed 53 DoGs that had 
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segments significant for both treatment and control as these require individual biological 

interpretation. Out of the remaining 4171 DoGs, unsurprisingly, I find the majority of DoGs have 

significant segments from the KCL treatment (treated: 3262; control 909). Next, I filtered for all 

DoGs that have every segment significant in a condition across the entire loci (similar CXXC4 in 

Fig. V-9 A), and find that most DoGs do not have all segments significant (total: 2779; 

treatment: 2248; control 531) (Fig. V-13 A). I next filtered for DoGs that have a significant first 

segment, I find that there is a similar number of DoGs with a significant first segment (total: 

2116; treatment: 1375; control 741) and without (total: 2055; treatment: 1887; control 168) 

(Fig. V-13 B). Finally, I filtered for DoGs that have a significant last segment, I find that the 

majority of DoGs do have a significant last segment (total: 3121; treatment: 2651; control 611) 

than those without (total: 1050; treatment: 470; control 439) (Fig. V-13 C). 

 

 
Figure V-13: DoGs with significant segments from Vilborg et al., 2015 

 
Bar plots displaying the counts of DoGs with significant segments. Note: each graph is out of 
4171 DoGs as 53 DoGs have been removed because they contain significant segments from 
both conditions. (A) Count plot showing DoGs with all segments significant (total: 1392; 
treatment: 1014; control 378) and without (total: 2779; treatment: 2248; control 531). (B) DoGs 
with a significant first segment (total: 2116; treatment: 1375; control 741) and without (total: 
2055; treatment: 1887; control 168). (C) DoGs with a significant last segment (total: 3121; 
treatment: 2651; control 611) and those without (total: 1050; treatment: 470; control 439). 
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Discussion 

 
This chapter presented the MaDDoG algorithm and its preliminary application to several 

genomic regions.  I created MaDDoG to partition downstream of gene regions and call 

differential expression on these partitioned sections. MaDDoG can be run on any region of the 

genome but is expected to take DoGs as input, which may come from DoGFinder, ARTDeco, or 

Dogcatcher. The ultimate goal of MaDDoG is to distinguish regions of true transcription from 

transcriptional noise through patterns of differential transcription.  

 

Using Bayesian changepoints analysis with clustering of switchpoints I have found many 

promising applications of MaDDoG. Firstly, although MaDDoG does not find DoG regions, it can 

be used to trim end-regions of transcriptional noise from overcalled DoGs. This trimming 

approach reduces the windowing issues that the previously mentioned algorithms suffer from 

and is a simple way to apply MaDDoG to DoGs genome-wide (as running MaDDoG on all genic 

and intergenic regions would be computationally infeasible). I used three example genes from 

Vilborg et al., 2015 to show that MaDDoG can delineate genes that have only a treatment DoG, 

have a treatment and control DoG, and a “trimmed” treatment DoG. Next, I use three example 

genic regions and apply Bayesian changepoint analysis for discovering intron retention or 

alternative/unannotated exon usage, as well as highlight where the algorithm struggles on very 

long regions that have high transcriptional variability and noise (POLA1). Finally, I apply 

MaDDoG genome-wide and show that most DoGs do not have significant segments across the 

entire loci, justifying the fine-grained approach of MaDDoG. Next, I show that there is a similar 
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amount of significant and non-significant first segments indicating in the lower expressed 

condition, there is likely an even split between genes that have no DoG or a truncated DoG. 

Finally, I show that the majority of DoGs have significant last segments, although there is a fair 

number of DoGs (1050) that benefit from end trimming. 

 

Moving forward, extensive quantitative performance evaluation is needed and many 

potential improvements to MaDDoG can be made. For example, the accuracy of exon 

boundaries could be quantified based on window level accuracy, rather than the more manual 

inspection approach shown here.  In the improvement direction, MaDDoG is built using the 

Poisson process (i.e., the mean in our case) which is a one parameter distribution, it should be 

possible to instead use the Negative Binomial which can take two parameters as input (mean 

and variance). This Negative Binomial addition would likely improve the modelling of counts 

between samples within a group, as currently the variance is not used. I admit to trying to 

implement this method but ran into trouble because it changes not only the underlying HMM 

model but also training, which becomes much more complex especially when training multiple 

models in parallel. In addition to changing the Bayesian changepoint analysis method, selecting 

an alternative clustering algorithm to DBscan may improve speed without sacrificing clustering 

performance375.  

 
Materials and methods 

 
MaDDoG was created using a modified version of Dogcatcher, tensor flow probability, 

and DBscan in scikit learn. Using a virtual environment to install tensor flow probability is highly 
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recommended. We have provided a requirements.txt file (in extra scripts on GITHUB) that will 

install identical versions of the packages. When first using MaDDoG, going through the README 

on GITHUB is highly recommended. Briefly, a Nextflow pipeline has been provided that will 

trim, map, and process bams with mosdepth. Next, run the normalizeMosdepth jupyter 

notebook to average and normalize samples per condition across windows. After that, run the 

dogcatcher_nextflow.sh script that runs a modified version of Dogcatcher, then runs a nextflow 

pipeline that runs MaDDoG on each chromosome in parallel. Finally, run the FilterDESeq2 

jupyter notebook which aggregates the output of each chromosome and provides Bed files and 

data frames of significant segments. 

All code for MaDDoG can be accessed at https://github.com/Senorelegans/MaDDoG  
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VI. Summary and Conclusion 

 
Summary of major findings and future experiments 

 
In this thesis, I described two major project directions: (1) the development of Mystery 

Miner376, a tool for quantifying pathogen presence within RNA-seq data from the set of reads 

that do not map to the reference human genome; and (2) the development of tools for the 

study of downstream of gene (DoG) transcripts, which resulted in two tools:  Dogcatcher367 and 

MaDDoG (unpublished, described in Chapter V).   My application domain has been in 

neurodegenerative disease; for example, I applied Mystery Miner to a large cohort of patients 

with Amyotrophic Lateral Sclerosis.  The DoG work was initially driven by observations of dsRNA 

foci in tdp-1 knockouts, but also focuses on conditions that give rise to stress granules, which 

are observed in Alzheimer’s disease (though Alzheimer’s was not directly assayed in this work).   

 
 
Mystery Miner and potential pathogens in ALS 

 
How Amyotrophic Lateral Sclerosis, Alzheimer’s disease, and numerous other 

neurodegenerative diseases develop largely remains a mystery. The hunt for factors that might 

contribute to the formation of these diseases has a storied history and include but are not limited 

to inheritance of alleles or mutations of certain genes, exposure to environmental factors such 

as heavy metals, and pathogens.  

 

In the search for potential pathogens that might contribute to these neurodegenerative 

diseases, we developed Mystery Miner, an algorithm that utilizes non-host reads to assemble 
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sequences and identify potential pathogens or contamination.  We then apply Mystery Miner to 

our large novel ALS-related dataset.  While our work showed Mystery Miner was effective on 

both real and synthetic datasets (Chapter IV), the application to a large ALS patient dataset had 

mixed results.  While on the one hand, we recovered a viral RNA-dependent RNA polymerase, 

this RDRP was not observed in other ALS-related datasets. Lastly, we perform a meta-analysis of 

other comparable datasets in the ALS field and accumulate additional evidence that a single 

microbe or set of microbes do not contribute to this neurodegenerative disease. 

 

Despite not finding convincing evidence for the contribution of pathogens to 

neurodegeneration in our datasets or other datasets analyzed, we are optimistic that Mystery 

Miner will be a valuable tool for researchers analyzing publicly available datasets. Additionally, 

with the ever-decreasing cost of sequencing, we hope Mystery Miner will be used on datasets 

yet to be released.  Given that RNA-seq is less than 15 years old, our novel dataset is 

tremendously valuable for the field because of the number of individuals (most datasets are 3-4 

samples per condition) in multiple patient classes. Along with the search for pathogens, this 

dataset is ripe for other researchers to apply different types of analysis such as repetitive 

element analysis, alternative splicing, or RNA editing.  

 

There are many avenues of research that can be pursued using Mystery Miner. Since 

many neurodegenerative diseases have overlapping pathology, it would be interesting to 

compare recovered microbes from individuals with a variety of these diseases. Additionally, it is 

possible that older individuals that already have the disease suffered insult from pathogens many 
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years before that are longer resident. As biome sequencing of healthy individuals becomes 

standard medical practice, we might discover that specific biomes in younger healthy individuals 

predispose them for certain neurodegenerative diseases which may lead to preventative 

treatments. 

 

Aside from our dataset, we hope that Mystery Miner will be a useful tool for other 

researchers that are looking for potential pathogens that might contribute to any disease or to 

quality check potential contamination of samples. Once RNA-seq becomes more commonplace, 

applying Mystery Miner in a clinical setting would help physicians link disease phenotypes to 

known or unknown pathogens. In addition, Mystery Miner might help alleviate the current 

problem of over-prescribing antibiotics. For example, if a patient has a viral infection identified 

by Mystery Miner, it would be pointless to prescribe bacterial antibiotics.  

 
Heat shock in C. elegans, Dogcatcher, and MaDDoG 

 
For Heat shock in C elegans, our work builds on a large body of work that characterizes 

the effects of this stress in the worm.  We have shown that with heat shock in C. elegans, many 

previously unknown changes occur. We first identify the presence of nuclear dsRNA foci and 

quantify formation of foci over time. Next, we note increased transcription of downstream of 

gene regions and develop an algorithm called Dogcatcher to identify and quantify these regions 

genome-wide. We show that these regions are enriched in RNA immunoprecipitated using a 

dsRNA specific antibody and biologically validate a region identified using Dogcatcher. Given 

our current knowledge of C. elegans, nuclear dsRNA foci has only been identified after heat 
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shock or with tdp-1 knockout. I believe that discovering how, why, and what these foci are 

composed of will bring significant biological insights to the field. 

 

With regards to dsRNA in worms, there are many unresolved questions that can be 

further explored. Although we used J2 IP for RIP-seq, we still have no idea if any of the enriched 

transcripts are in the dsRNA foci. The foci could be composed of a large amount of highly similar 

transcripts (repetitive elements) or composed of many separate transcripts. Additionally, if the 

dsRNA foci are strictly composed of RNA or also contain protein remains unresolved. Stress 

induced nuclear granules (STING) form in worms under salt stress, oxidative stress, but not with 

heat shock, although STING formation can be inhibited by a brief pre-exposure heat shock that 

is dependent upon HSF-1377. It would be a worthwhile follow up to look for co-localization of 

STINGs and nuclear dsRNA foci. Finally, we have only looked at dsRNA foci from worms that 

have a tdp-1 deletion or have been heat shocked, it is likely that there are other conditions that 

form dsRNA, such as osmotic stress, salt stress, or starvation. 

 

 Additionally, identifying and quantifying downstream of gene transcripts is a young field 

and we are hopeful that there are many important discoveries to be made. As an improvement 

to Dogcatcher, we developed MaDDoG. MaDDoG is built to partition DoGs into segments based 

on changepoints of the mean and to quantify these segments between groups of samples. We 

first use synthetic data to validate our approach, then apply it genome-wide on a real dataset. 

We then highlight MaDDoGs ability to identify genes with or without truncated control DoGs, 



150 
 

remove transcriptional noise from overcalled DoGs, and lastly run it on genic regions where it 

can be used to look for intron retention and alternative exon use. 

 

Given that we have no idea what DoGs even do, we hope our DoG algorithms will be 

used by researchers to answer many questions yet to come. As we learn more about the 

pathways of DoG formation and mechanisms of action, it is likely the field will grow in both 

number of researchers and complexity of the data and algorithms. To our knowledge, Bayesian 

change point analysis has not been applied to DoGs before and shows great potential for 

obtaining true biological insights.  

 

Additionally, Biological validation of MaDDoG using RT-PCR or FISH in segments that we 

believe are true DoGs or transcriptional noise would be a tremendously beneficial experiment 

to prove the usefulness of the algorithm. This same approach can also be used on genic regions 

where we believe there is intron retention or unannotated exons that only appear in treatment 

conditions.  

 

Conclusion 

 
In this thesis, we have shown that often discarded data can be a treasure trove of 

knowledge for researchers that go the extra mile. With the current ever-increasing stream of 

new data, it will be vital that researchers correctly utilize new approaches so biological findings 

don’t slip through the cracks. We hope that any biological insights gained and developed 

algorithms will be beneficial to patients suffering from neurodegenerative diseases. 
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VII. Additional Research 

Introduction 

 
There is a complex interplay between repetitive element transcription and activation of 

the immune system in both viral infection378,379 and neurodegeneration73,380. Due to the recent 

pandemic and our familiarity with aberrant repetitive element expression in neurodegenerative 

diseases174, we sought to apply this analysis to datasets of coronavirus infection [SARS-CoV-1, 

SARS-CoV-2, Middle East Respiratory Syndrome (MERS)] to look for any differences in host 

response. To our knowledge no meta-analysis has been performed that analyzes repetitive 

element expression between these various coronaviruses. We analyzed three publicly available 

datasets which are described below. 

 

The first dataset has already been used in chapter IV, which has (SARS-CoV) 1 or 2 

infection (Emanuel et al., 2020353 ). In the first study human epithelial Calu3 cells were infected 

with SARS-CoV-1 or SARS-CoV-2 (4, 12, or 24 hours), mock (4 or 24 hours), or untreated (4 

hours). The second dataset from Blanco-Melo et al.,2020381 uses Calu 3 cells infected with 

SARS-CoV-1 for 24 hours with mock controls. The third dataset from Zhang et al., 2020382 uses 

Calu 3 cells infected with MERS for 24 hours with mock controls. 
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Results 

 
Using Repenrich2383, we found statistically significant differential repetitive element 

expression (run at the class level) in virus infected cells compared to mock in all datasets (Fig. 

VII-1). MERS infection showed the greatest difference with 332 enriched and 396 depleted, 

with every SINE element depleted (Fig. VII-1 A). Next, we looked at SARS-CoV-2 from 

BlancoMelo et al., 2020 and found 113 enriched and 106 depleted with the majority coming 

from LTR and DNA families (Fig. VII-1 B). Lastly, we looked at SARS-CoV-1 or SARS-CoV-2 in 

Emanuel et al., 2020, we found that for SARS-CoV-2 compared to SARS-CoV-1, there is 

increased differential expression for both enriched (155 vs 70) and depleted (150 vs 56) 

transcripts (Fig. VII-1 C, D).  

 

Additionally, since Emanuel et al., 2020 had SARS-CoV-1 or SARS-CoV-2 infected cells, 

we were able to compare these strains directly. We found that the main difference in RE 

expression from SARS-CoV-2 vs SARS-CoV-1 is increased expression of LTRs with SARS-CoV-2 

(Fig. VII-2 A) and that the majority of these LTRs are from Endogenous retroviral elements (Fig. 

VII-2 B). 
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Figure VII-1: Repetitive element expression in coronavirus datasets 

MA plot of Calu-3 infected cells from various coronaviruses showing statistically significant 
differences in repetitive element expression. (A) MERS infection showed the greatest difference 
with 332 enriched and 396 depleted, with every SINE element depleted. (B) In the first SARS-
CoV-1 data, we found 113 enriched and 106 depleted with the majority coming from LTR and 
DNA families. For SARS-CoV-2 compared to SARS-CoV-1, there is increased differential 
expression for both enriched (155 vs 70) and depleted (150 vs 56) transcripts (C, D). All plots 
colored by family. 
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Figure VII-2: SARS-CoV-2 vs SARS-CoV-1 in Emanuel et al., 2020 

MA plot of Calu-3 infected cells for SARS-CoV-2 vs SARS-CoV-1 in Emanuel et al., 2020. 
(A) Comparing SARS-CoV-2 vs SARS-CoV-1 directly we found increased expression of LTRs with 
SARS-CoV-2 infection. (B) When we identify elements by class, we find the majority of these 
LTRs are from Endogenous retroviral elements. 
 
 

Discussion 

 
To our knowledge, we have performed the first meta-analysis of differential repetitive 

element expression from coronavirus infected cell lines. We found broad changes in repetitive 

element expression for each study and show that MERS infection has the most changes, 

followed by SARS-CoV-2, and finally SARS-CoV-1 infection. We also show that a large difference 

of RE expression from SARS-CoV-2 compared to SARS-CoV-1 comes from human endogenous 

retroviral elements (HERV). HERVs are ancient infections that for the most part lay dormant in 

the genome, although basal expression confers some ability to modulate the immune 

system384. Numerous other viruses such as HIV-1, Influenza A virus, and herpesviruses can 

induce HERV activation which can contribute to development of viral disease and virus-
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associated tumors385. Additional follow up work should be conducted on HERV activation in 

SARS-CoV-2 so we may better understand this pathogen and create potential treatments. 

 

Materials and methods 

 
All data was processed with Repenrich2 (downloaded May 5th 2020, default settings). 

Differential expression was called using DESeq2 (version 1.30.1, default settings) with a 

statistical significance value cutoff (P adj < 0.05). All data used in this analysis is publicly 

available.  
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